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Abstract
The DifSets Package implements an algorithm for enumerating all difference sets up to equivalence in an
arbitrary finite group. The algorithm functions by finding difference sums, which are potential images of
difference sets in quotient groups of the original group, and searching their preimages. In this way, the search
space can be dramatically decreased, and searches of groups of relatively large order (such as order 64 or order
96) can be completed.

Copyright
Copyright © 2017, 2019 Dylan Peifer

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option)
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This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
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Chapter 1

Definitions

1.1 Difference Sets

A 〈v,k,λ 〉-difference set is a nonempty proper subset D of a finite group G such that |G| = v, |D| =
k, and each nonidentity element of G can be written as did−1

j for di,d j ∈ D in exactly λ different
ways. The standard example is the 〈7,3,1〉-difference set {1,2,4} of the group Z/7Z under addition.
Additionally, it can easily be shown that every one element subset of a group is a difference set, and
the complement of any difference set is also a difference set.

We will often abuse notation and let D denote both the set D and the element

D = ∑
d∈D

d

of the group ring Z[G]. Then define
gD = ∑

d∈D
gd,

Dφ = ∑
d∈D

φ(d),

D(−1) = ∑
d∈D

d−1,

where g ∈G and φ is a homomorphism with domain G. Using this notation, a difference set in G is an
element of the group ring Z[G] with coefficients from {0,1} such that DD(−1) = (k−λ )+λG, where
by convention the isolated coefficients (k−λ ) are assumed to be coefficients of the identity.

Two difference sets D1,D2 are equivalent if both are in the same group G and D1 = gDφ

2 for some
g∈G and φ ∈Aut(G). In other words, D1 is equivalent to D2 if D1 can be mapped to D2 by translation
and automorphism in the group G. We say D1,D2 are translationally equivalent if they are equivalent
solely by translation, meaning D1 = gD2 for some g ∈ G.

In the package, difference sets are stored as lists of integers that represent the index of the ele-
ments in the difference set as found in the list of all elements in the group returned by the GAP func-
tion Elements(G). For example, the difference set [1, 3, 6, 9, 11, 13] in SmallGroup(16,
5) really consists of the first, third, sixth, ninth, eleventh, and thirteenth elements of the list returned
by Elements(SmallGroup(16, 5)). When given as arguments, difference sets in the package are
never assumed to be sorted, but many functions will return difference sets in sorted order since sorting
is used internally.
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1.2 Difference Sums

A 〈v,k,λ 〉-difference sum in a group G modulo its normal subgroup N is an element S of the group ring
Z[G/N] such that SS(−1) = (k−λ )+λ |N|G/N and the coefficients of S have values in {0,1, . . . , |N|}.
Note that the original G and N are included in the definition, so it makes no sense to talk about a
difference sum in some arbitrary group H. The size of a difference sum is the sum of its coefficients,
and by defining the complement of S to be |N|G/N−S we can see that, similar to difference sets, size
one sums and complements of difference sums are always difference sums.

Two difference sums S1,S2 are equivalent if both are in the same group G mod its normal subgroup
N and S1 = gSφ

2 for some g∈G/N and φ an automorphism of G/N induced by an automorphism of G.
Note that not all automorphisms of G/N are induced by automorphisms of G, so our definition here
is more restrictive than perhaps expected. As with difference sets, the sums S1,S2 are translationally
equivalent if S1 = gS2 for some g ∈ G/N.

In the package, difference sums are stored as lists of integers that represent the values of the
coefficients of the group ring elements, with position in the list given by the position of the coset in the
list of elements returned by the GAP function Elements(G/N). For example, the difference sum [2,
4] in G := SmallGroup(16, 5) mod its normal subgroup Subgroup(G, [G.2, G.3, G.4]) has
coefficient 2 on the identity coset, and coefficient 4 on the nonidentity coset.

Difference sums can be thought of as a generalization of difference sets. More importantly, how-
ever, difference sums can be thought of as images of difference sets in quotients of the original group.
In particular, if θ : G→ G/N is the natural projection, then for any difference set D in Z[G] we have
a difference sum Dθ in G modulo its normal subgroup N. Additionally, difference sums induce other
difference sums in any further quotient. The fundamental idea of the algorithm in this package is that
we can reverse this process. Starting with G mod G, where the only difference sum of size k is [k], we
can successively refine this difference sum up a series of quotients of G until reaching G itself. In each
step we enumerate all preimages of the difference sums and remove preimages that are not difference
sums themselves. In the final step we refine to difference sets. Furthermore, since equivalent differ-
ence sums will have equivalent collections of difference sets as preimages, in each step we remove
all but one representative of each equivalence class from our collection. This method dramatically
decreases the search space for an exhaustive enumeration of all difference sets up to equivalence in
G.



Chapter 2

Package Contents

The DifSets Package consists of a collection of functions implementing the main algorithm, and
some additional functions for experimentation and testing. Several functions not appearing in this
documentation are used internally for certain subtasks. See the code itself for details.

2.1 The Main Functions

The purpose of this package is to provide a function that efficiently enumerates all difference sets up to
equivalence in a given group. Similarly, we can also enumerate all difference sums up to equivalence.
The following are these functions. Their components are described in further sections.

2.1.1 DifferenceSets

. DifferenceSets(G) (function)

Returns a list of all difference sets up to equivalence in the group G . Only the smaller of each
complementary pair of difference sets is included, and one-element difference sets are ignored.

Example
gap> G := SmallGroup(16, 9);;
gap> DifferenceSets(G);
[ [ 1, 2, 3, 4, 7, 10 ], [ 1, 2, 3, 4, 8, 9 ] ]

2.1.2 DifferenceSums

. DifferenceSums(G, N) (function)

Returns a list of all difference sums up to equivalence in the group G mod its normal subgroup N .
Only the smaller of each complementary pair of difference sums is included, and difference sums of
size 1 are ignored.

Example
gap> G := SmallGroup(16, 8);;
gap> N := Subgroup(G, [G.3, G.4]);;
gap> DifferenceSums(G, N);
[ [ 3, 1, 1, 1 ], [ 2, 2, 2, 0 ] ]
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2.2 Sizes

The first step of the algorithm is to determine what possible sizes of difference sets and sums the
group can contain. Each size is then handled individually since different size sets or sums will never
be equivalent.

2.2.1 PossibleDifferenceSetSizes

. PossibleDifferenceSetSizes(G) (function)

Returns a list of the possible sizes of difference sets in group G . Only the smaller of any pair
of complementary sizes is returned, and the trivial size 1 is never included. Current implementation
simply returns all values of k such that lambda = k(k-1)/(v-1) is an integer, where v is the order of G ,
and the resulting parameters v, k, lambda pass the Bruck-Ryser-Chowla test.

Example
gap> G := SmallGroup(31, 1);;
gap> PossibleDifferenceSetSizes(G);
[ 6, 10, 15 ]

2.2.2 DifferenceSetsOfSizeK

. DifferenceSetsOfSizeK(G, k) (function)

Returns a list of all difference sets up to equivalence in the group G that have size k .
Example

gap> G := SmallGroup(16, 9);;
gap> DifferenceSetsOfSizeK(G, 1);
[ [ 1 ] ]

2.2.3 DifferenceSumsOfSizeK

. DifferenceSumsOfSizeK(G, N, k) (function)

Returns a list of all difference sums up to equivalence in the group G mod its normal subgroup N
that have size k .

Example
gap> G := SmallGroup(16, 8);;
gap> N := Subgroup(G, [G.3, G.4]);;
gap> DifferenceSumsOfSizeK(G, N, 1);
[ [ 1, 0, 0, 0 ] ]

2.3 Refining

Refining refers to the process of enumerating the preimages of a difference sum and filtering out
preimages that are not themselves difference sets or sums. For each size k we know that the only
difference sum of size k in G mod G is [k]. Starting with this difference sum, we successivly refine
through a series of quotients of G to eventually reach the desired sums or sets. In the algorithm, we
use SomeRefinedDifferenceSets (2.3.4) and SomeRefinedDifferenceSums (2.3.8) rather than



DifSets 8

AllRefinedDifferenceSets (2.3.2) and AllRefinedDifferenceSums (2.3.6) since the former are
faster and we only need at least one representative of each equivalence class since additional equivalent
sums or sets will just be removed anyway.

2.3.1 RefiningSeries

. RefiningSeries(G) (function)

Returns a normal series for group G . Current implementation produces a chief series through a
nontrivial normal subgroup of smallest possible size in G .

Example
gap> G := SmallGroup(8, 3);;
gap> List(RefiningSeries(G), N -> Size(N));
[ 8, 4, 2, 1 ]

2.3.2 AllRefinedDifferenceSets

. AllRefinedDifferenceSets(G, N, difsums) (function)

Returns a list of all difference sets that are preimages of difference sums contained in the list
difsums of difference sums in group G mod its normal subgroup N . Difference sums in difsums are
all assumed to be the same size.

Example
gap> G := SmallGroup(16, 5);;
gap> N := Subgroup(G, [G.2, G.4]);;
gap> AllRefinedDifferenceSets(G, N, [[3,1,1,1], [2,2,2,0]]);
[ [ 1, 3, 2, 8, 4, 15 ], [ 1, 3, 2, 8, 9, 11 ], [ 1, 3, 2, 13, 4, 11 ],

[ 1, 3, 2, 13, 9, 15 ], [ 1, 3, 6, 8, 4, 11 ], [ 1, 3, 6, 8, 9, 15 ],
[ 1, 3, 6, 13, 4, 15 ], [ 1, 3, 6, 13, 9, 11 ], [ 1, 5, 2, 6, 4, 15 ],
[ 1, 5, 2, 6, 9, 11 ], [ 1, 5, 2, 13, 4, 9 ], [ 1, 5, 2, 13, 11, 15 ],
[ 1, 5, 6, 8, 4, 9 ], [ 1, 5, 6, 8, 11, 15 ], [ 1, 5, 8, 13, 4, 15 ],
[ 1, 5, 8, 13, 9, 11 ], [ 1, 10, 2, 6, 4, 11 ], [ 1, 10, 2, 6, 9, 15 ],
[ 1, 10, 2, 8, 4, 9 ], [ 1, 10, 2, 8, 11, 15 ], [ 1, 10, 6, 13, 4, 9 ],
[ 1, 10, 6, 13, 11, 15 ], [ 1, 10, 8, 13, 4, 11 ], [ 1, 10, 8, 13, 9, 15 ],
[ 3, 5, 2, 6, 4, 11 ], [ 3, 5, 2, 6, 9, 15 ], [ 3, 5, 2, 8, 4, 9 ],
[ 3, 5, 2, 8, 11, 15 ], [ 3, 5, 6, 13, 4, 9 ], [ 3, 5, 6, 13, 11, 15 ],
[ 3, 5, 8, 13, 4, 11 ], [ 3, 5, 8, 13, 9, 15 ], [ 3, 10, 2, 6, 4, 15 ],
[ 3, 10, 2, 6, 9, 11 ], [ 3, 10, 2, 13, 4, 9 ], [ 3, 10, 2, 13, 11, 15 ],
[ 3, 10, 6, 8, 4, 9 ], [ 3, 10, 6, 8, 11, 15 ], [ 3, 10, 8, 13, 4, 15 ],
[ 3, 10, 8, 13, 9, 11 ], [ 5, 10, 2, 8, 4, 15 ], [ 5, 10, 2, 8, 9, 11 ],
[ 5, 10, 2, 13, 4, 11 ], [ 5, 10, 2, 13, 9, 15 ], [ 5, 10, 6, 8, 4, 11 ],
[ 5, 10, 6, 8, 9, 15 ], [ 5, 10, 6, 13, 4, 15 ], [ 5, 10, 6, 13, 9, 11 ] ]

2.3.3 NrAllRefinedSets

. NrAllRefinedSets(G, N, difsums) (function)

Returns the number of preimages that will need to be checked during a call to
AllRefinedDifferenceSets (2.3.2) with the same arguments. This can give a rough estimate of
how long the call will take to complete.
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Example
gap> G := SmallGroup(16, 5);;
gap> N := Subgroup(G, [G.2, G.4]);;
gap> NrAllRefinedSets(G, N, [[3,1,1,1], [2,2,2,0]]);
472

2.3.4 SomeRefinedDifferenceSets

. SomeRefinedDifferenceSets(G, N, difsums) (function)

Returns a list of some difference sets that are preimages of difference sums contained in the list
difsums of difference sums in group G mod its normal subgroup N . At least one member of each
equivalence class that would appear in the set of all preimages will be returned, but all preimage
difference sets may not appear. Difference sums in difsums are all assumed to be the same size.
Current implementation forces the choice of an identity element when possible.

Example
gap> G := SmallGroup(16, 5);;
gap> N := Subgroup(G, [G.2, G.4]);;
gap> SomeRefinedDifferenceSets(G, N, [[3,1,1,1], [2,2,2,0]]);
[ [ 1, 3, 2, 8, 4, 15 ], [ 1, 3, 2, 8, 9, 11 ], [ 1, 3, 2, 13, 4, 11 ],

[ 1, 3, 2, 13, 9, 15 ], [ 1, 3, 6, 8, 4, 11 ], [ 1, 3, 6, 8, 9, 15 ],
[ 1, 3, 6, 13, 4, 15 ], [ 1, 3, 6, 13, 9, 11 ], [ 1, 5, 2, 6, 4, 15 ],
[ 1, 5, 2, 6, 9, 11 ], [ 1, 5, 2, 13, 4, 9 ], [ 1, 5, 2, 13, 11, 15 ],
[ 1, 5, 6, 8, 4, 9 ], [ 1, 5, 6, 8, 11, 15 ], [ 1, 5, 8, 13, 4, 15 ],
[ 1, 5, 8, 13, 9, 11 ], [ 1, 10, 2, 6, 4, 11 ], [ 1, 10, 2, 6, 9, 15 ],
[ 1, 10, 2, 8, 4, 9 ], [ 1, 10, 2, 8, 11, 15 ], [ 1, 10, 6, 13, 4, 9 ],
[ 1, 10, 6, 13, 11, 15 ], [ 1, 10, 8, 13, 4, 11 ], [ 1, 10, 8, 13, 9, 15 ] ]

2.3.5 NrSomeRefinedSets

. NrSomeRefinedSets(G, N, difsums) (function)

Returns the number of preimages that will need to be checked during a call to
SomeRefinedDifferenceSets (2.3.4) with the same arguments. This can give a rough estimate
of how long the call will take to complete.

Example
gap> G := SmallGroup(16, 5);;
gap> N := Subgroup(G, [G.2, G.4]);;
gap> NrSomeRefinedSets(G, N, [[3,1,1,1], [2,2,2,0]]);
300

2.3.6 AllRefinedDifferenceSums

. AllRefinedDifferenceSums(G, N1, N2, difsums) (function)

Returns a list of all difference sums in group G mod its normal subgroup N2 that are preimages of
difference sums contained in the list difsums of difference sums in group G mod its normal subgroup
N1 . The subgroup N2 must be contained in N1 . Difference sums in difsums are all assumed to be the
same size.
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Example
gap> G := SmallGroup(16, 5);;
gap> N1 := Subgroup(G, [G.2, G.4]);;
gap> N2 := Subgroup(G, [G.2]);;
gap> AllRefinedDifferenceSums(G, N1, N2, [[3,1,1,1], [2,2,2,0]]);
[ [ 1, 1, 0, 1, 0, 1, 2, 0 ], [ 1, 1, 2, 1, 0, 1, 0, 0 ],

[ 1, 0, 1, 1, 0, 2, 1, 0 ], [ 1, 2, 1, 1, 0, 0, 1, 0 ],
[ 0, 1, 1, 2, 0, 1, 1, 0 ], [ 2, 1, 1, 0, 0, 1, 1, 0 ] ]

2.3.7 NrAllRefinedSums

. NrAllRefinedSums(G, N1, N2, difsums) (function)

Returns the number of preimages that will need to be checked during a call to
AllRefinedDifferenceSums (2.3.6) with the same arguments. This can give a rough estimate of
how long the call will take to complete.

Example
gap> G := SmallGroup(16, 5);;
gap> N1 := Subgroup(G, [G.2, G.4]);;
gap> N2 := Subgroup(G, [G.2]);;
gap> NrAllRefinedSums(G, N1, N2, [[3,1,1,1], [2,2,2,0]]);
22

2.3.8 SomeRefinedDifferenceSums

. SomeRefinedDifferenceSums(G, N1, N2, difsums) (function)

Returns a list of some difference sums in group G mod its normal subgroup N2 that are preimages
of difference sums contained in the list difsums of difference sums in group G mod its normal sub-
group N1 . At least one member of each equivalence class that would appear in the set of all preimages
will be returned, but all preimage difference sums may not appear. The subgroup N2 must be contained
in N1 and difference sums in difsums are all assumed to be the same size. Current implementation
forces a choice of nonzero identity coefficient when possible.

Example
gap> G := SmallGroup(16, 5);;
gap> N1 := Subgroup(G, [G.2, G.4]);;
gap> N2 := Subgroup(G, [G.2]);;
gap> SomeRefinedDifferenceSums(G, N1, N2, [[3,1,1,1], [2,2,2,0]]);
[ [ 1, 1, 0, 1, 0, 1, 2, 0 ], [ 1, 1, 2, 1, 0, 1, 0, 0 ],

[ 1, 0, 1, 1, 0, 2, 1, 0 ], [ 1, 2, 1, 1, 0, 0, 1, 0 ],
[ 2, 1, 1, 0, 0, 1, 1, 0 ] ]

2.3.9 NrSomeRefinedSums

. NrSomeRefinedSums(G, N1, N2, difsums) (function)

Returns the number of preimages that will need to be checked during a call to
SomeRefinedDifferenceSums (2.3.8) with the same arguments. This can give a rough estimate
of how long the call will take to complete.
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Example
gap> G := SmallGroup(16, 5);;
gap> N1 := Subgroup(G, [G.2, G.4]);;
gap> N2 := Subgroup(G, [G.2]);;
gap> NrSomeRefinedSums(G, N1, N2, [[3,1,1,1], [2,2,2,0]]);
21

2.4 Equivalence

Since we are searching for all difference sets or sums up to equivalence, at each stage
we remove excess equivalent sums or sets from our collection. This can be done with
EquivalentFreeListOfDifferenceSets (2.4.1) and EquivalentFreeListOfDifferenceSums
(2.4.3). The additional functions TranslateFreeListOfDifferenceSets (2.4.2) and
TranslateFreeListOfDifferenceSums (2.4.4) can be used to eliminate translate
equivalent sums or sets, but they are not used in the main algorithm. Alternatively,
SmallestEquivalentDifferenceSet (2.4.5) uses the SmallestImageSet function from
the GRAPE package to produce the lexicographically minimal difference set equivalent to
a given set. Eliminating equivalent sets can then be done by mapping each set to its min-
imal representative and then simply eliminating duplicates. This is done automatically by
SmallestEquivalentFreeListOfDifferenceSets (2.4.6), which is used in the last stage of
the main algorithm instead of EquivalentFreeListOfDifferenceSets (2.4.1). While the full
algorithm with SmallestEquivalentFreeListOfDifferenceSets (2.4.6) is roughly 20% slower
on average (and is almost 4x as slow on a few groups of order 64), this function is used since it is
much faster on large automorphism groups (such as the automorphism group of SmallGroup(64,
267), which is impossible with EquivalentFreeListOfDifferenceSets (2.4.1)) and provides a
unique minimal result at the end of the algorithm.

2.4.1 EquivalentFreeListOfDifferenceSets

. EquivalentFreeListOfDifferenceSets(G, difsets) (function)

Returns a list of inequivalent difference sets in the group G that consists of one representative from
each equivalence class found in the list difsets of arbitrary difference sets in G .

Example
gap> G := SmallGroup(16, 4);;
gap> sets := [[8,9,12,13,14,15], [7,8,9,13,15,16], [1,7,10,11,14,15]];;
gap> EquivalentFreeListOfDifferenceSets(G, sets);
[ [ 8, 9, 12, 13, 14, 15 ] ]

2.4.2 TranslateFreeListOfDifferenceSets

. TranslateFreeListOfDifferenceSets(G, difsets) (function)

Returns a list of translationally inequivalent difference sets in the group G that consists of one rep-
resentative from each translational equivalence class found in the list difsets of arbitrary difference
sets in G .
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Example
gap> G := SmallGroup(16, 4);;
gap> sets := [[8,9,12,13,14,15], [7,8,9,13,15,16], [1,7,10,11,14,15]];;
gap> TranslateFreeListOfDifferenceSets(G, sets);
[ [ 8, 9, 12, 13, 14, 15 ], [ 7, 8, 9, 13, 15, 16 ] ]

2.4.3 EquivalentFreeListOfDifferenceSums

. EquivalentFreeListOfDifferenceSums(G, N, difsums) (function)

Returns a list of inequivalent difference sums in the group G mod its normal subgroup N that
consists of one representative from each equivalence class found in the list difsums of arbitrary
difference sums in G mod N .

Example
gap> G := SmallGroup(16, 4);;
gap> N := Subgroup(G, [G.1 * G.2 * G.3, G.3, G.4]);;
gap> EquivalentFreeListOfDifferenceSums(G, N, [[4,2], [2,4]]);
[ [ 4, 2 ] ]

2.4.4 TranslateFreeListOfDifferenceSums

. TranslateFreeListOfDifferenceSums(G, N, difsums) (function)

Returns a list of translationally inequivalent difference sums in the group G mod its normal sub-
group N that consists of one representative from each translational equivalence class found in the list
difsums of arbitrary difference sums in G mod N .

Example
gap> G := SmallGroup(16, 4);;
gap> N := Subgroup(G, [G.1 * G.2 * G.3, G.3, G.4]);;
gap> TranslateFreeListOfDifferenceSums(G, N, [[4,2], [2,4]]);
[ [ 4, 2 ] ]

2.4.5 SmallestEquivalentDifferenceSet

. SmallestEquivalentDifferenceSet(G, D) (function)

Returns the set that is lexicographically smallest among all sets that are equivalent to the difference
set D in the group G .

Example
gap> G := SmallGroup(16, 4);;
gap> SmallestEquivalentDifferenceSet(G, [8,9,12,13,14,15]);
[ 1, 2, 3, 4, 8, 15 ]

2.4.6 SmallestEquivalentFreeListOfDifferenceSets

. SmallestEquivalentFreeListOfDifferenceSets(G, difsets) (function)
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Returns a list containing the lexicographically smallest set for each set in the list of difference sets
difsets in the group G . Duplicates are removed, so the returned list contains exactly one representa-
tive from each equivalence class found in difsets .

Example
gap> G := SmallGroup(16, 4);;
gap> sets := [[8,9,12,13,14,15], [7,8,9,13,15,16], [1,7,10,11,14,15]];;
gap> SmallestEquivalentFreeListOfDifferenceSets(G, sets);
[ [ 1, 2, 3, 4, 8, 15 ] ]

2.5 Testing

These additional functions are provided to check work and perform other experimentation. They are
inefficient when used repeatedly. For example, when testing a large number of difference sets in a
single group, it is better to precompute the needed group operations and store them in a table for
lookup, but IsDifferenceSet (2.5.1) simply does the multiplication directly since it is only testing
one set.

2.5.1 IsDifferenceSet

. IsDifferenceSet(G, D) (function)

Returns true if the set D is a difference set in the group G , and false otherwise.
Example

gap> G := SmallGroup(16, 4);;
gap> IsDifferenceSet(G, [1, 2, 3, 4, 5, 6]);
false
gap> IsDifferenceSet(G, [1, 2, 8, 10, 11, 15]);
true

2.5.2 IsDifferenceSum

. IsDifferenceSum(G, N, S) (function)

Returns true if the sum S is a difference sum in the group G mod its normal subgroup N , and false
otherwise.

Example
gap> G := SmallGroup(16, 4);;
gap> N := Subgroup(G, [G.1 * G.2 * G.3, G.3, G.4]);;
gap> IsDifferenceSum(G, N, [2, 4]);
true
gap> IsDifferenceSum(G, N, [1, 1]);
false

2.5.3 IsEquivalentDifferenceSet

. IsEquivalentDifferenceSet(G, D1, D2) (function)

Returns true if sets D1 and D2 are equivalent in the group G , and false otherwise.
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Example
gap> G := SmallGroup(16, 4);;
gap> IsEquivalentDifferenceSet(G, [1,5,8,9,10,14], [1,5,7,8,10,15]);
false

2.5.4 IsEquivalentDifferenceSum

. IsEquivalentDifferenceSum(G, N, S1, S2) (function)

Returns true if sums S1 and S2 are equivalent in the group G mod its normal subgroup N , and
false otherwise.

Example
gap> G := SmallGroup(16, 4);;
gap> N := Subgroup(G, [G.1 * G.2 * G.3, G.3, G.4]);;
gap> IsEquivalentDifferenceSum(G, N, [2,4], [4,2]);
true

2.6 Loading Results

The data directory of the DifSets Package contains precomputed results for 1006 of the 1032 groups
of order less than 100. The following two functions are the easiest way to access these precomputed
lists of difference sets up to equivalence.

2.6.1 CanLoadDifferenceSets

. CanLoadDifferenceSets(v, n) (function)

Returns true if a precomputed list of all difference sets up to equivalence can be loaded from the
package library for the group SmallGroup(v, n), and false otherwise.

Example
gap> CanLoadDifferenceSets(36, 9);
true
gap> CanLoadDifferenceSets(79, 1);
false

2.6.2 LoadDifferenceSets

. LoadDifferenceSets(v, n) (function)

Returns the precomputed list of all difference sets up to equivalence for the group SmallGroup(v,
n) stored in the package library. An error is thrown if no precomputed list is available. Note that the
listed difference sets are specific to SmallGroup(v, n), as GAP may label entries of other isomor-
phic versions of the same group differently.

Example
gap> LoadDifferenceSets(15, 1);
[ [ 1, 2, 3, 4, 8, 11, 12 ] ]
gap> G := SmallGroup(15, 1);; H := AbelianGroup([15]);;
gap> IdGroup(G) = IdGroup(H);
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true
gap> IsDifferenceSet(G, [1, 2, 3, 4, 8, 11, 12]);
true
gap> IsDifferenceSet(H, [1, 2, 3, 4, 8, 11, 12]);
false



Chapter 3

Results

The DifSets Package was designed with the goal of finding all difference sets up to equivalence in
groups of order 64 and 96, a goal which was accomplished. Overall, the algorithm has successfully
computed results for 1006 of the 1032 groups of order less than 100. Full results, which include
timings, number of sets, and the sets themselves can be found in the data subdirectory of the package,
which is organized by group order and contains a single .txt file for each computed group. A list
of all timings can also be found in the file groups.csv in the data directory, and the difference
sets themselves can be loaded using the function LoadDifferenceSets (2.6.2). All computations
were performed using GAP 4.9.1 on a 4.00GHz i7-6700K using 8GB of RAM. Here we give a basic
overview of results and comments on timings. Throughout this chapter we will refer to the group
returned by the GAP function SmallGroup(v, n) as [v, n].

3.1 Order 16 and 36

Difference sets in groups of order 16 and 36 form the first nontrivial examples of the Hadamard
parameters, and exhaustive enumerations are already well known. Still, computation of these sets
gives a useful benchmark and check of accuracy.

Almost all groups in these orders take less than a second. The group [36, 9], however, takes
several orders of magnitude longer than other groups of order 36. This is because [36, 9] does
not have small normal subgroups (in particular, its smallest nontrivial normal subgroup has order 9),
and refining across a large gap in sizes, expecially near the end of the algorithm, requires checking
significantly more preimages.

16
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Group Difference Sets Time (seconds)
[16, 1] 0 0.030
[16, 2] 3 0.103
[16, 3] 4 0.100
[16, 4] 3 0.100
[16, 5] 2 0.061
[16, 6] 2 0.071
[16, 7] 0 0.072
[16, 8] 2 0.070
[16, 9] 2 0.082
[16, 10] 2 0.187
[16, 11] 2 0.121
[16, 12] 2 0.195
[16, 13] 2 0.117
[16, 14] 1 0.059

Group Difference Sets Time (seconds)
[36, 1] 0 0.335
[36, 2] 0 0.201
[36, 3] 0 0.407
[36, 4] 0 0.322
[36, 5] 0 0.218
[36, 6] 6 0.412
[36, 7] 1 0.795
[36, 8] 4 0.340
[36, 9] 5 340.989
[36, 10] 6 1.137
[36, 11] 3 0.699
[36, 12] 6 0.417
[36, 13] 1 0.801
[36, 14] 3 0.434

3.2 Order 64 and 96

Difference sets in groups of order 64 also satisfy the Hadamard parameters, while difference sets in
groups of order 96 satisfy the McFarland parameters. Since there are many groups of both orders, here
we just give some examples and summaries. In particular, the tables below list the fastest, slowest,
and median five groups of each order, sorted by time.

Groups of order 64 are p-groups, and thus always have enough normal subgroups to form long
refining series. This means the refining steps are relatively efficient for all groups in this order. The
main difference between groups is the size of the automorphism group, and, in particular, four of the
five groups taking the largest amount of time are four of the five groups with the largest automorphism
groups in this order. The additional group in the top five, [64, 235], has a relatively large number
of difference sets, but is otherwise unremarkable. In general, smaller numbers of difference sets
correspond to faster times, and in fact the eight groups with no difference sets were computed the
fastest, beating the next fastest groups by an order of magnitude. Overall, the mean computation time
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for a group of order 64 was 3988.476 seconds, with a median time of 1493.175 seconds. This means
that the total computer time to compute all difference sets in groups of order 64 was roughly 12 days.

In groups of order 96 we do not always have large numbers of normal subgroups, and, as with
[36, 9], this can substantially slow down computation. In fact, the five groups taking the longest
computation time are five of the six groups with fewest normal subgroups in this order. We are helped,
however, by the fact that the only valid choice of k is 20, which is relatively small and thus does not
lead to large numbers of preimages even across large gaps in the refining series. Many groups in this
order have no difference sets, but even for these groups computation can be slow. While the fastest
groups contain no difference sets, many groups with no difference sets actually take much longer
than other groups that do contain difference sets. Overall, the mean computation time for a group of
order 96 was 24447.991 seconds, with a median time of 11278.765 seconds. This means that the total
computer time to compute all difference sets in groups of order 96 was roughly 65 days.

Group Difference Sets Time (seconds)
[64, 52] 0 3.451
[64, 54] 0 3.463
[64, 47] 0 3.594
[64, 186] 0 3.940
[64, 1] 0 3.950

[64, 166] 2312 1424.692
[64, 134] 342 1439.484
[64, 135] 540 1493.175
[64, 7] 1320 1515.710

[64, 160] 3192 1518.693
[64, 192] 222 21131.394
[64, 267] 4 23662.500
[64, 235] 4317 24566.186
[64, 260] 30 144338.020
[64, 262] 148 229488.988

Group Difference Sets Time (seconds)
[96, 2] 0 8.731
[96, 59] 0 8.791
[96, 189] 0 29.378
[96, 66] 0 29.777
[96, 46] 0 44.478
[96, 209] 4 10809.673
[96, 133] 16 11198.052
[96, 224] 0 11278.765
[96, 89] 0 11349.466
[96, 102] 0 11415.688
[96, 227] 42 308246.830
[96, 64] 14 310447.407
[96, 70] 28 514559.313
[96, 72] 2 515196.547
[96, 71] 8 871439.024
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3.3 Comments

Overall, the algorithm spends almost all of its time performing four operations: refining sums to
sums in several stages using SomeRefinedDifferenceSums (2.3.8), refining sums to sets in the final
stage using SomeRefinedDifferenceSets (2.3.4), removing equivalent difference sums in several
stages using EquivalentFreeListOfDifferenceSums (2.4.3), and removing equivalent difference
sets in the final stage using SmallestEquivalentFreeListOfDifferenceSets (2.4.6). On typical
groups of order 16 and order 36 (i.e., not [36, 9]), each of these four operations takes roughly the
same time. On groups of order 64, some testing indicates that one or two orders of magnitude more
time are spent in the final stage, when the algorithm uses SomeRefinedDifferenceSets (2.3.4) and
SmallestEquivalentFreeListOfDifferenceSets (2.4.6). This discrepency is likely to remain or
increase for larger order groups, as the number of preimages to check increases exponentially with the
number of cosets. For the tested groups of order 64, roughly 60% of the time in the final stage was
spent refining, with the remaining 40% spent removing equivalent sets.

Large automorphism groups make removing equivalents time-consuming and large jumps in the
size of the normal subgroups used, especially near the end of the algorithm, make refining difficult.
So, in general, the algorithm seems to work well when the group has a small automorphism group and
many (small) normal subgroups. In addition, the algorithm does better when the values of k that need
to be checked are small, as this limits both the number of preimages to check as well as the amount of
time required for checking sets and equivalences. It is also generally faster when the final result is a
smaller number of difference sets.

There are twenty-six groups of order less than 100 in which the algorithm was not able to complete
a search. Fourteen of these groups are prime order cyclic. As simple groups, these groups have no
normal subgroups and thus no possibility for refining, which means the algorithm must search every
possible subset of size k to find all difference sets of size k. Even for groups of relatively small
order, such as order 31, this is infeasible, and with current implementation will overflow memory
before even starting the search (one of these groups, [37, 1] is actually feasible to search without
this implementation issue, but the others have too many sets to check). The remaining groups have
either too few normal subgroups, large jumps in the refining series, large possible values of k, or a
combination of these problems.

The next natural cases for exhaustive search are groups of order 100 and order 144, which give
the next Hadamard parameters. Unfortunately, preliminary testing indicates that this algorithm is not
likely to be able to compute all difference sets for these groups. For example, a typical difference sum
in [100, 9] is [5, 4, 3, 3, 0, 3, 2, 3, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 2, 3], which
has roughly 6× 1016 preimage sets to check. In the search for difference sets in [36, 9] the single
difference sum [6, 3, 3, 3], with around 3× 107 preimages, takes around 300 seconds to search.
Thus even if we could check sets in [100, 9] as fast as in [36, 9], the search would take roughly
20000 years. Some testing suggests that coding pieces of the algorithm in C could give one or two
orders of magnitude of speedup, but even further speedup is required to make the search feasible, so
some other improvements, either in theory or implementation, are needed as well.


	Definitions
	Difference Sets
	Difference Sums

	Package Contents
	The Main Functions
	Sizes
	Refining
	Equivalence
	Testing
	Loading Results

	Results
	Order 16 and 36
	Order 64 and 96
	Comments


