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Hopf-Galois Structures

Let L/K be a finite Galois extension of fields, with Γ = Gal(L/K ).

A Hopf-Galois structure on L/K consists of a Hopf algebra H over K and
a “nice” K -linear action of H on L (basic example: H = K [Γ]):

the action is compatible with the multiplication on N:

α · (xy) = mult (∆(α) · (x ⊗ y)) ,

α · 1 = ε(α)1 for all α ∈ K [G ], x , y ∈ L,

where ∆ is the comultiplication and ε the augmentation;

(“Galois”, i.e. non-degeneracy, condition): the following map is
bijective:

θ : L⊗K H −→ EndKL, θ(x ⊗ h)(y) = x(h · y).

In particular, this means dimK H = [L : K ] and H acts faithfully on L.
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Classifying Hopf Galois Structures

Greither and Pareigis (1987) showed the Hopf Galois structures correspond
bijectively to subgroups G of the (large) group Perm(Γ) which are regular
(i.e. given x , y ∈ Γ there is a unique g ∈ G with g · x = y) and are
normalised by λ(Γ), the left translations by Γ.

We can turn around the relation between Γ and G :
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Hopf Galois structures correspond to equivalence classes of regular
embeddings

Γ −→ Hol(G ) ⊆ Perm(G ),

where G is an abstract group with |G | = |Γ|, and

Hol(G ) = {(g , α) | g ∈ G , α ∈ Aut(G )},

with (g , α)(h, β) = (gα(h), αβ), i.e.

Hol(G ) = λ(G ) oAut(G ).

Two embeddings are deemed to be equivalent if they are conjugate by an
element of Aut(G ).

The type of the HGS is (the isomorphism class of) G .

We can use this to count the HGS on a field extension L/K with given
Galois group Γ.
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Example: Cyclic Extensions of Prime-Power Degree

For Γ = Cpr with p an odd prime, there are pr−1 Hopf Galois structures,
all with G = Cpr [Kohl].

The case p = 2 is more complicated: for Γ = C2r ,

if r = 1, there is one Hopf Galois structure, with G = C2;

if r = 2, there is one Hopf Galois structure with G = C4 and one with
G = C2 × C2;

if r ≥ 3, there are 3 · 2r−2 Hopf Galois structures, 2r−2 each for
G = C2r , Q2r , D2r .
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Non-abelian HGS on abelian extensions
“Most” abelian Γ admit a non-abelian HGS.

Theorem (L. Childs + NB)

Let Γ be an abelian group of order n. Then a Galois field extension with
group Γ admits a non-abelian HGS if any of the following hold:

(i) Γ contains a non-cyclic p-subgroup of order ≥ p3;

(ii) n is even and n > 4;

(iii)

Γ =
∏
p∈Θ

(Cp × Cp)×
∏
p∈Ψ

Cpep ,

where Θ, Ψ are disjoint sets of primes, and either

(a) (q, p − 1) > 1 for some p, q ∈ Θ ∪Ψ, or
(b) (q, p + 1) > 1 for some p ∈ Θ, q ∈ Θ ∪Ψ.

On the other hand, there are some n, such as n = 32 × 112 or 73 × 19,
such that, if Γ = Cn, then every Hopf-Galois structure must have type Cn,
even though non-abelian groups G of order n exist.
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Counting Nilpotent Hopf Galois Structures
A finite group G is nilpotent if it is the direct product of its Sylow
subgroups,

G =
∏
p

Gp,

(e.g. if G is abelian or a p-group).

Let Γ be nilpotent. Define enil(Γ) to be the number of nilpotent HGS on a
Galois extension with group Γ.

This is the number of equivalence classes of regular embeddings

β : Γ −→ Hol(G )

as G ranges through nilpotent groups of order |Γ|.
Since each Gp is a characteristic subgroup of G (i.e. it is fixed under all
automorphisms), we have

Aut(G ) =
∏
p

Aut(Gp), Hol(G ) =
∏
p

Hol(Gp).
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We are looking for

β :
∏
p

Γp −→
∏
q

Hol(Gq).

We can write β as a “matrix” (βpq) where βpq : Γp −→ Hol(Gq).

Lemma

β is regular⇔ each βpp is regular.

If β is a regular embedding then, for p 6= q, the group βpq(Γp) must
centralise the regular subgroup βqq(Γq) of Hol(Gq), so must be a q-group.
Hence βpq(Γp) is trivial.

Hence β is a regular embedding if and only if (βpq) is a diagonal matrix
whose diagonal entries are regular embeddings.
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Hence we have

Theorem

For a nilpotent group Γ:

enil(Γ) =
∏
p

enil(Γp).

Corollary (Nilpotent HGS on cyclic extensions)

Let r(n) =
∏

p|n p, the radical of n. Then

enil(Cn) =


n

r(n) if 8 - n;

3
2

(
n

r(n)

)
if 8 | n.

(But a cyclic extension may also have HGS which are not nilpotent!)
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HGS of nilpotent type

Theorem

Suppose a Galois extension with group Γ admits a HGS of type G, with G
nilpotent. Then Γ is soluble.

Recall this means we have subgroups

1 = Γ0 C Γ1 C · · ·C Γs = Γ

with each Γi+1/Γi abelian.

Let J be a group with |J| = prm, where p is prime and p - m. Then a Hall
p′-subgroup of J is a subgroup H with |H| = m. Unlike Sylow
p-subgroups, these don’t always exist.

e.g. If J = A5 of order 60, then J has a Hall p′-subgroup for p = 5 but not
for p = 2 or p = 3.

In fact, J has a Hall p′-subgroup for every p ⇔ J is soluble (Hall, 1937).
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Now suppose we have a regular embedding

β : Γ −→ Hol(G )

with G =
∏
p

Gp nilpotent.

For each p, let

Hp =
∏
q 6=p

Gq,

a Hall p′-subgroup of G . Then Gp is characteristic in G . (It consists of all
elements of order prime to p.)

Define
∆p = {γ ∈ Γ |β(γ) · eG ∈ Hp}.

Since β(Γ) is regular, it is obvious that ∆p is a subset of Γ has size |Hp|.
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Since Hp is characteristic in G , we can prove:

Lemma

∆p is a subgroup of Γ.

Proof. Let γ ∈ ∆p, say β(γ) · eG = h ∈ Hp.

Then β(γ) = (h, α) for some α ∈ Aut(G ).

Given another γ′ ∈ ∆p, say β(γ′) = (h′, α′), we have

β(γγ′) = (h, α)(h′, α′) = (hα(h′), αα′)

and β(γγ′) · eG = hα(h′) ∈ Hp since α(Hp) = Hp. So γγ′ ∈ ∆p.

So ∆p is a Hall p′-subgroup of Γ.

Since Γ has a Hall p′-subgroup for each p, Γ is soluble.
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Must a HGS on an abelian extension be soluble?
Suppose an extension with Galois group Γ admits a HGS of type G .

We have shown that

G nilpotent ⇒ Γ soluble.

Here is a strategy (as yet not completely implemented) to prove a weak
converse:

Theorem?

Γ abelian⇒ G soluble,

i.e. every HGS on an abelian extension must be soluble.

Remark: One might wonder if Γ soluble ⇔ G soluble, or, more generally,
whether Γ and G always have the same composition factors. This turns
out not to be the case. It is not difficult to construct an example with
Γ = A4 × C5 and G = A5. I do not know of any examples where Γ is
insoluble but G is soluble.
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So suppose Γ is abelian, and we have a regular embedding

β : Γ ↪→ Hol(G ).

If H is a characteristic subgroup of G then β induces a homomorphism

β : Γ −→ Hol(G/H),

whose image is a transitive abelian subgroup of Hol(G/H). Hence this
image is regular on G/H.

Let Σ = ker(β). Then |Σ| = |H| and the abelian group Σ acts regularly on
H.

It will suffice to show G/H and H are both soluble.

Inductively, we can therefore reduce to the case where G is
characteristically simple.
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Now a characteristically simple group H has the form

H = T × T . . .× T︸ ︷︷ ︸
m

for some simple group T and some m ≥ 1.

So we need to show that we cannot have a regular embedding

Γ ↪→ Hol(Tm)

where Γ is abelian and T is a non-abelian simple group.

In this case

Aut(Tm) = (Aut(T )m) o Sm = Aut(T ) wr Sm,

where Sm is the symmetric group permuting the m factors.
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Aside: Classification of Finite Simple Groups

The finite simple groups are

cyclic of prime order (the only abelian ones!);

alternating groups An for n ≥ 5;

(classical or exceptional) groups of Lie type: there 16 families of
these, of which the easiest to describe is

PSLn(q), n ≥ 2, q a prime power;

26 sporadic simple groups (smallest is the Matthieu group M11 of
order 7290; largest is the Monster of order approx 8× 1053).

Nigel Byott (University of Exeter, UK ) Hopf Galois Structures Omaha, 29 May 2013 16 / 1



Back to HGS on abelian extensions

Can we have a regular embedding of an abelian group Γ in

Hol(Tm) = Tm o (Aut(T )m o Sm)

when T is a non-abelian simple group?

Aut(T ) contains the subgroup of inner automorphisms Inn(T ) ∼= T , and,
as a consequence of the Classification of Finite Simple Groups, we know
that the quotient

Out(T ) =
Aut(T )

Inn(T )

is (soluble and) small relative to T .

e.g. for T sporadic, |Out(T )| ≤ 2.

Nigel Byott (University of Exeter, UK ) Hopf Galois Structures Omaha, 29 May 2013 17 / 1



Projecting Γ into successive quotients in the sequence

1 −→ Tm −→ (T o Inn(T ))m −→ Hol(T )m −→ Hol(T )m o Sm,

we get abelian subgroups

Γ1 ≤ Sm Γ2 ≤ Out(T )m, Γ3 ≤ Inn(T )m ∼= Tm, Γ4 ≤ Tm

such that
|Γ1| |Γ2| |Γ3| |Γ4| = |Γ| = |T |m.

Why shouldn’t this be possible? A non-abelian simple group should not
contain a “large” abelian subgroup.

There is a theorem which (almost) guarantees this:
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Theorem (Vdovin, 1999)

Let T be a non-abelian simple group not of the form PSL2(q), and let A
be an abelian subgroup of T . Then |A|3 < |T |.

[Note: C5 < A5 and 53 > 60. But A5
∼= PSL2(5) ∼= PSL2(4).]

Proof: Use the Classification of Finite Simple Groups.

It follows that if A is an abelian subgroup of Tm then |A|3 < |Tm|.
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Thus, for a particular non-abelian simple group T , if we know |T | and
|Out(T )|, we have upper bounds on |Γi | for i = 1, . . . , 4, and we should be
able to show |Γ| < |Tm|.

This (or a slight variation) works for the alternating groups An, for
PSLn(q) (including n = 2) and for the sporadic groups. It still needs to be
checked for the other families of groups of Lie type.
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