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Let K be a local field, complete with respect to a discrete valuation

vK : K → Z ∪ {∞}.

Then K has:

• OK = {x ∈ K : vK(x) ≥ 0}

• PK = {x ∈ K : vK(x) > 0}

• k = OK/PK

• Let L be a finite Galois extension of K and let G = Gal(L/K).

• k perfect, char(k) = p > 0. Two cases:

• char(K) = p,

• char(K) = 0,

Aim: To study OL as an OK [G]-module.

• Noether: OL is (locally) free over OK [G]⇔ L/K is tame.

• Therefore in the wildly ramified case: OL is not locally free over OK [G].

• Can we enlarge OK [G], in order to obtain something in which OL is free
over?

This motivates the definition of the associated order:

AL/K(OL) = {α ∈ K[G] : αOL ⊆ OL}.

Some results (what we already know):
Char(K) = 0, degree p extension case: Betrandias’, Ferton (1970s): OL is

free over AL/K(OL) iff s | (p − 1) where b = q0p + s (1 ≤ s ≤ p − 1) is the
ramification number satisfying b < ep

p−1 − 1.

Ferton: Necessary and sufficient conditions for Ph
L (some h ∈ Z) to be free

over AL/K(Ph
L). These will be looked at in detail later.

Char(K) = p degree p extensions case:
Aiba and Lettl: OL is free over AL/K iff s|(p − 1) where b = q0p + s (1 ≤

s ≤ p−1) is the ramification number. Re-interpreted by Bart de Smit and Lara
Thomas (dsT07) in a more algebraic way. Let m be the (unique) maximal ideal
of AL/K(OL). Then define the embedding dimension as:

edim(AL/K(OL)) := dimk(m/m2)

then OL is free over AL/K(OL) iff edim(AL/K(OL)) ≤ 3.

Theorem 1. (dsT07) Let K be a local field with char(K) = p, and let L/K
be a totally ramified cyclic extension of degree p. Let b = q0p+ s be the unique
ramification number of L/K, with 1 ≤ s ≤ p− 1. Let d be the minimal number
of AL/K-generators of OL. Then d = 1 if and only if OL is free over AL/K
and:
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1. if s = p− 1 then d = 1 and edim(AL/K) = 2;

2. if s < p− 1 then edim(AL/K) = 2d+ 1 and d =
∑
i<n,iodd bi, where the bi

are the unique integers given by the continued fraction expansion:

−s
p

= b0 +
1

b1 + 1

...
...

bn−1+ 1
bn

where b1, . . . , bn ≥ 1 and bn ≥ 2.

In particular, OL is free over its associated order if and only if s | (p− 1).

Question: Given h ∈ Z, when is Ph
L free over

AL/K(Ph
L) = {α ∈ K[G] : αPh

L ⊆ Ph
L}

(for the degree p char(K) = p case)?
Utilise dst07:

• Let d = minimal number of AL/K-module generators of OL

and define:

aj =

⌈
js

p

⌉
, εj = aj − aj−1

mn = inf{εi+j + . . .+ εi+n : 0 ≤ i ≤ p− n}, m0 = 0

D = {i : 0 < i < p : aj +mi−j < ai ∀ j : 0 < j < i}
E = {i : 0 ≤ i < p : mj +mi−j < mi ∀ j : 0 < j < i}

Theorem (dST07):

• d = |D|,

• edim(AL/K(OL)) = |E|

It turns out we can add a h dependency on these sequences in order to obtain
the equivalent conditions for Ph

L. For some h ∈ Z define:

a
(h)
j =

⌈
h+ js

p

⌉
, ε

(h)
j = a

(h)
j − a

(h)
j−1

m(h)
n = inf{ε(h)i+j + . . .+ ε

(h)
i+n : 0 ≤ i ≤ p− n}, m(h)

0 = 0

D(h) = {i : 0 ≤ i < p : a
(h)
i +m

(h)
j−i < a

(h)
j ∀ j : i < j < p}

E(h) = {i : 0 ≤ i < p : m
(h)
j +m

(h)
i−j < m

(h)
i ∀ j : 0 < j < i}

Note that ‘E’ has stayed the same but ‘D’ has changed defintion slightly. Propo-
sition:

• d = |D(h)|,

• edim(AL/K(Ph
L)) = |E(h)|
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Byott & Elder (preprint): Define, WLOG, for s− p+ 1 ≤ h ≤ s,

d(j) =

⌊
(j + 1)s− h

p

⌋
w(j) = min{d(j + i)− d(i) ∀ 0 ≤ i ≤ p− 1− j}
D = {u : d(u) > d(u− j) + w(j) ∀ 0 < j ≤ u}
E = {u : w(u) > w(u− j) + w(j) ∀ 0 < j < u}

Proposition 2. D = D(h) and E = E(h)

Notation: Let s
p = [q0; q1, . . . , qn] denote the continued fraction expansion of

s
p .

Example 3. Let s
p = 5

13 = [0; 2, 1, 1, 2], also let h = s and 0 ≤ j ≤ p − 1 so

that d(j) =
⌊
(j+1)s−h

p

⌋
=
⌊
js
p

⌋
.

j 0 1 2 3 4 5 6 7 8 9 10 11 12
d(j) 0 0 0 1 1 1 2 2 3 3 3 4 4
w(j) 0 0 0 1 1 1 2 2 3 3 3 4 4

D = {0} and E = {0, 1, 3, 8}.
Note how we can describe these d’s (and w’s) in terms of ‘blocks’ of length

2 and of length 3 (horizontally). If we call the blocks of length 2 Short (S) and
the blocks of length 3 Long (L) then we can describe the {d(j)} as:

LLSLS.

We would like to determine the size and shape of the sets D and E in general
(as these determine the number of generators and embedding dimension, as
above). In order to do this we require to know the shapes of our general {d(j)}
and {w(j)}.

Let S0 = {∗} = L0 (a single digit or element of a block). Then, for 1 ≤ k ≤ n,
we define recursively:

S1 = S = {∗}q1 , L1 = L = {∗}q1+1 (1)

Lk = Lk−1S
qk
k−1 Sk = Lk−1S

qk−1
k−1 for even k ≥ 2; (2)

Lk = Sqkk−1Lk−1, Sk = Sqk−1
k−1 Lk−1 for odd k ≥ 3. (3)

Proposition 4. If s/p = [0; q1, . . . , qn] with qn ≥ 2 then the sequence of residues
when h = s gives the word Sn.

Example 5. As before, let s
p = 5

13 = [0; 2, 1, 1, 2] and let h = s. Then, using
these recursive relations:

S4 = L3S
q4−1
3

= Sq32 L2(Sq3−1
2 L2)q4−1

= (LSq2−1)q3LSq2 [(LSq2−1
2 )q3−1LSq2 ]q4−1

= (LS0)1LS0[(LS0)0LS1]1

= LLSLS

Hence S4 = L(LS)2, which agrees with our previous example.
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• What about when h 6= s? In this case the words we obtain to describe the
{d(j)} will be the word Sn but amalgamated in some way. We therefore
invent a co-ordinate system to describe how the word has been shifted:

For co-ordinates (x1, . . . , xn) consider the following Algorithm:

Algorithm 6. For even n:

Step 1. Start with Sn = Ln−1S
qn−1
n−1 .

Step 2. Move xn copies of Sn−1 right to left.

Step 3. Then move xn−1 copies of Sn−2 left to right.

Step 4. Then move xn−2 copies of Sn−3 right to left.

...

Step n+ 1. Conclude by moving x1 copies of S0 = ∗ left to right.

For odd n:

Step 1. Start with Sn = Sqn−1
n−1 Ln−1.

Step 2. Move xn copies of Sn−1 left to right.

Step 3. Then move xn−1 copies of Sn−2 right to left.

Step 4. Then move xn−2 copies of Sn−3 left to right.

...

Step n+ 1. Conclude by moving x1 copies of S0 = ∗ left to right.

Let zj be the number of co-ordinates with xi = 0 for all i < j. Using the
fact (which we won’t prove here) xi ≤ qi with

xi = qi ⇒ xi+1 = 0

and in particular, xn < qn. Then:

zn+1 = 1, zn = qn.

zj−1 = qj−1zj + zj+1.

s− h = x1z2 + x2z3 + . . .+ xn−1zn + xnzn+1.

Theorem 7. To obtain the sequence {d(j)} for s − h = z2x1 + . . . + zn+1xn,
i.e. for co-ordinates (x1, . . . , xn), perform Algorithm 6.

Example 8. 4
13 = [0; 3, 4]. The co-ordinate (1,3) corresponds to the {d(j)}:

1. S2 = L1S
q2−1
1 = L1S

3
1

2. Move x2 copies of S1 right to left: S3
1L1

3. Move x1 copies of S0 = ∗ left to right: since S1 = ∗ ∗ ∗, we obtain:
{d(j)} = ∗ ∗ S2

1L1∗
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And this corresponds to which value of h? Well, z3 = 1, z2 = q2 thus
f1 = q1f2 + f3 = 13. So

s− h = x1s+ x2 = 4 + 3 = 7,

or h = −3.

In a similar manner, we can obtain co-ordinates for each value of h in the
example:

s− h d(j) Co-ord

0 LSSS (0, 0)
1 SLSS (0, 1)
2 SSLS (0, 2)
3 SSSL (0, 3)
4 ∗ ∗ ∗SSS∗ (1, 0)
5 ∗ ∗ LSS∗ (1, 1)
6 ∗ ∗ SLS∗ (1, 2)
7 ∗ ∗ SSL∗ (1, 3)
8 ∗ ∗ SSS ∗ ∗ (2, 0)
9 ∗LSS ∗ ∗ (2, 1)
10 ∗SLS ∗ ∗ (2, 2)
11 ∗SSL ∗ ∗ (2, 3)
12 ∗SSS ∗ ∗∗ (3, 0)

So now we can describe our {d(j)} pattern for varying h using our co-odinate
system and ‘words’.

Proposition 9. Let dn(j) denote the general pattern of the {d(j)}0≤j≤p−1 for
a given n. For s

p = [0; q1, . . . , qn] and co-ordinates (x1, . . . xn) the pattern of the

{d(j)} for general n are as follows:
For even n:

dn(j) ={∗}q1−x1Sx2−1
1 Sq3−x3−1

2 L2S
x4−1
3 Sq5−x5−1

4 L4 . . .

S
qn−1−xn−1−1
n−2 Ln−2S

xn−1
n−1 Ln−1S

qn−xn−1
n−1 . . .

L5S
q6−x6−1
5 Sx5−1

4 L3S
q4−x4−1
3 Sx3−1

2 L1S
q2−x2−1
1 {∗}x1 .

(4)

For odd n:

dn(j) ={∗}q1−x1Sx2−1
1 Sq3−x3−1

2 L2S
x4−1
3 Sq5−x5−1

4 L4 . . .

S
xn−1−1
n−2 Sqn−xn−1

n−1 Ln−1S
xn−1
n−1 Ln−2S

qn−1−xn−1−1
n−2 . . .

L5S
q6−x6−1
5 Sx5−1

4 L3S
q4−x4−1
3 Sx3−1

2 L1S
q2−x2−1
1 {∗}x1 .

(5)

As the w(j) depend on the d(j) we can now find the general pattern of these
too:

Proposition 10. Let wn(j) denote the general pattern of the {w(j)}0≤j≤p−1

for a given n. Then:

w1(j) = ∗max(q1−x1,x1)∗min(q1−x1,x1), (6)
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and for even n:
wn(j) = Ln−1S

qn−2
n−1 wn−1(j). (7)

For odd n > 1, write

α = max(qn − xn − 1, xn − 1)

β = min(qn − xn − 1, xn − 1)

Then:
wn(j) = Sαn−1Ln−1S

β
n−1wn−1(j). (8)

Note that if, for example, x4 = 0, then we will have a negative exponent on
the S3 in (4) and (5). This needs to be reinterpreted in some way so it makes
sense. We have been able to do this when thinking about only the {d(j)} but it
is not yet clear how to obtain the general pattern of the D and E when some of
the xi are zero (although we have solved these entirely for n = 2, 3). For now,
then, we have only the following Propositions:

Proposition 11. Let none of the xi be zero. For even n, the set D can be
described as:

D ={0, s1 − x1s0, 2s1 − x1s0, . . . , x2s1 − x1s0,
s3 − x3s2 + x2s1 − x1s0, 2s3 − x3s2 + x2s1 − x1s0, . . . ,
x4s3 − x3s2 + x2s1 − x1s0, . . . ,
sn−1 − xn−1sn−2 + xn−2sn−3 − . . .+ x2s1 − x1s0, . . . ,
xnsn−1 − xn−1sn−2 + xn−2sn−3 − . . .+ x2s1 − x1s0}

Thus, for even n,

|D| = 1 +
∑
i<n
i even

xi (9)

For odd n, we have the following:
For xn <

1
2qn, D is the same as the even case, i.e. only the even elements

are in D.
For xn ≥ 1

2qn, D is the same as the even case, but with one extra element,
µ, at the end, where,

µ = sn − xnsn−1 + xn−1sn−2 − xn−2sn−3 + . . .+ x2s1 − x1s0.

Hence, for odd n:

|D| =

{
1 +

∑
i even xi for xn <

1
2qn

2 +
∑
i even xi for xn ≥ 1

2qn
(10)

Proposition 12. Let none of the xi be zero. For even n, the set E can be
described as:

E ={0, 1, s1 + s0, 2s1 + s0, . . . , q2s1 + s0,

s3 + s2, 2s3 + s2, . . . q4s3 + s2, . . .

sn−1 + sn−2, 2sn−1 + sn−2, . . . , (qn − 1)sn−1 + sn−2,

p−min(qn−1 − xn−1, xn−1) · sn−2,

p−min(qn−3 − xn−3, xn−3) · sn−4, . . . , p−min(q1 − x1, x1) · s0}.
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Hence, for even n:

|E| = 1 +
n

2
+
∑
i even

qi (11)

For odd n:

E ={0, 1, s1 + s0, 2s1 + s0, . . . , q2s1 + s0,

s3 + s2, 2s3 + s2, . . . q4s3 + s2, . . .

sn−2 + sn−3, 2sn−2 + sn−3, . . . , qn−1sn−2 + sn−3,

p−min(qn − xn, xn) · sn−1,

p−min(qn−2 − xn−2, xn−2) · sn−3, . . . , p−min(q1 − x1, x1) · s0}.

|E| = 2 +
⌈n

2

⌉
+
∑
i even

qi (12)

Notes:

• Conjecture: If, for i odd, any xi = 0 then the p − min(qi − xi, xi) · si−1

term does not appear in E.

• Conjecture: we agree with dst07 in that when we have co-ordinate (x1, 0, . . . , 0),
in fact in their case x1 = 1, we replace xi by the qi in our formulae for
| D |.

Finally, we end on a result that we proved in some earlier work. It is
the char(K) = p equivalent of Ferton’s Theorem from 1972, where she gave
necessary and sufficient conditions for the freeness of Ph

L over AL/K(Ph
L) in

char(K) = 0. We have shown that her conditions transfer over into charcteris-
tic p:

Proposition 13. Let 0 ≤ h ≤ p− 1:

1. If b ≡ 1 (mod p) then Ph
L is free over AL/K(Ph

L) iff h = 0, h = 1, h > p+1
2 .

2. If b 6≡ 1 (mod p) then:

(a) Ph
L is not free over AL/K(Ph

L) ∀ s < h ≤ p− 1.

(b) Let s
p = [0; q1, . . . , qn]. For 0 ≤ h ≤ s, Ph

L is free over AL/K(Ph
L) iff

• for n even, h = s or h = s− qn
• for n odd, s− 1

2qn ≤ h ≤ s.
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