REVIEW

§5.1 (Approximating and Computing Area); §5.2 (The definite integral)

August 30, 2016
(1) Approximations to the area under the graph of f over the interval $[a, b]$:

Right-endpoint	Left-endpoint	Midpoint
$R_{N}=\Delta x \sum_{j=\square}^{(2)} f\left(x_{j}\right)$	$L_{N}=\Delta x \sum_{j=}^{(4)} f\left(x_{j}\right)$	$M_{N}=\Delta x \sum_{j=0}^{N-1} \square$

(2) If f is continuous on $[a, b]$, then the area A under the graph $y=f(x)$ is defined as

$$
A:=\square^{(6)}
$$

(3) The definite integral is the of the region between the graph of f and the x-axis. If f is on $[a, b]$, then f is integrable over $[a, b]$.
(4) Some properties of definite integrals:
(a) $\int_{a}^{b}(f(x)+g(x)) d x=$
(b) $\int_{a}^{b} C f(x) d x=$
(c) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
(d) $\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=$
(5) Some formulas for computing integrals
(a) $\int_{a}^{b} C d x=$ \qquad
(b) $\int_{0}^{b} x d x=$
(c) $\int_{0}^{b} x^{2} d x=$
(6) Comparison Theorem: If $f(x) \leq g(x)$ on $[a, b]$, then $\int_{a}^{b} f(x) d x \square_{a}^{(15)} \int_{a}^{b} g(x) d x$.

Practice Problems

§5.1 (Approximating and Computing Area); §5.2 (The definite integral)
(1) Use the graph of $g(x)$ given below to evaluate the following integrals.

(a) $\int_{0}^{3} g(x) d x$
(b) $\int_{3}^{5} g(x) d x$
(c) $\int_{0}^{5} g(x) d x$
(2) Find a formula for R_{N} for $f(x)=3 x^{2}-x+4$ over the interval [0,1].
(3) Calculate $\int_{2}^{5}(2 x+1) d x$ in three ways:
(a) As a limit $\lim _{N \rightarrow \infty} R_{N}$.
(b) Using geometry, interpreting this as the area under a graph.
(c) Using the properties of the integral.
(4) Use the basic properties of the integral to calculate the following.
(a) $\int_{1}^{4} 6 x^{2} d x$
(b) $\int_{-2}^{3}(3 x+4) d x$
(c) $\int_{1}^{3}|2 x-4| d x$
(5) Evaluate $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=1}^{N} \sqrt{1-\left(\frac{j}{N}\right)^{2}}$ by interpreting the limit as an area.

