DERIVATIVES REVIEW Math 1910

RAPID REVIEW

(1) Given a function f, the **derivative** of f at the point a is defined by

$$f'(\alpha) := \lim_{h \to 0} \frac{f(\alpha+h) - f(\alpha)}{h} = \lim_{x \to \alpha} \frac{f(x) - f(\alpha)}{x - \alpha}$$

- (2) The line tangent to (a, f(a)) is y f(a) = f'(a)(x a).
- (3) Differentiation rules:
 - (a) (cf)' = cf' if c is a constant.
 - (b) (f+g)' = f' + g'
 - (c) **Product rule**: (fg)' = f'g + fg'.
 - (d) Quotient rule: $\left(\frac{f}{g}\right)' = \frac{gf' fg'}{g^2}$.
 - (e) Chain rule: (f(g(x)))' = f'(g(x))g'(x).
- (4) **Implicit differentiation** is used to compute $\frac{dy}{dx}$ when the variables x and y are related by an equation, such as $x^3 y^3 = 4$. This is a special instance of the chain rule. To perform implicit differentiation, take the derivative of both sides. Remember that y is a function of x, so $\frac{d}{dx}f(y) = f'(y)y'$.
- (5) **The first derivative test:** If f is differentiable and c is a critical point, then the type of critical point can be found in the table.

Sign Change of $f'(x)$	Type of Critical Point
From + to -	Local max
From - to +	Local min

(6) A function f is **concave up** on (a, b) if f' is increasing, and **concave down** if f is decreasing. A **point of inflection** is a point (c, f(c)) where the concavity changes. We can use the first derivative test on the derivative f' to find the inflection points of f.

PROBLEMS

(1) Compute $\frac{dy}{dx}$.

(a)
$$y = 3x^5 - 7x^2 + 4$$

(a)
$$y = 3x^{2} - 7x$$

(b) $y = \frac{x}{x^{2} + 1}$

(c)
$$y = (x^4 - 9x)^6$$

(d)
$$y = \sqrt{x + \sqrt{x}}$$

(e)
$$y = tan(x)$$

(h)
$$x^3 - y^3 = 4$$

(i)
$$y = xy^2 + 2x^2$$

(f) $y = \sin(2x)\cos^2(x)$

(g) $y = \tan(\sqrt{1 + \csc x})$

(j)
$$y = \sin(x + y)$$

- (2) Find the points on the graph of $f(x) = x^3 3x^2 + x + 4$ where the tangent line has slope 10.
- (3) Find the critical points of f and determine if they are minima or maxima.

(a)
$$f(x) = x^3 - 4x^2 + 4x$$

(b)
$$f(x) = x^2(x+2)^3$$

(c)
$$f(x) = x^{2/3}(1-x)$$

(4) Find the points of inflection of the function f

(a)
$$f(x) = x^3 - 4x^2 + 4x$$

(b)
$$f(x) = x - 2\cos x$$

(c)
$$f(x) = \frac{x^2}{x^2+4}$$

(5) Find conditions on a and b that ensure $f(x) = x^3 + ax + b$ is increasing on $(-\infty, \infty)$.