§7.1: Exponential Functions §7.2: Inverse Functions §7.3 Logarithms

Math 1910

NAME: SOLUTIONS

ONE-PAGE REVIEW

- (1) $f(x) = b^x$ is increasing if b > 1 and decreasing if b < 1 (2).
- (2) The derivative of $f(x) = b^x$ is $\frac{d}{dx}b^x = b^x \ln(b)$
- (3) $\frac{x^x}{e} = e^x$ and $\frac{x^{f(x)}}{e} = f'(x)e^{f(x)}$ and $\frac{x^{kx+b}}{e} = ke^{kx+b}$.
- (4) $\int e^x dx = e^x + C$ and $\int e^{kx+b} = \frac{1}{k}e^{kx+b} + C$ for constants k, b.
- (5) A function f with domain D is **one to one** if f(x) = c has at most one solution with $x \in D$.
- (6) Let f have domain D and range R. The **inverse** f^{-1} is the unique function with domain R and range D $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$
- (7) The inverse of f exists if and only if f is one-to-one on its domain.
- (8) **Horizontal Line Test:** f is one-to-one if and only if every horizontal line intersects the graph of f only once.
- (9) To find the inverse function, solve y = f(x) for x (13) in terms of y (14).
- (10) The graph of f^{-1} is obtained by reflecting the graph of f through the line y = x (16).
- (11) If f is differentiable and one-to-one with inverse g, then for x such that $f'(g(x)) \neq 0$,

$$g'(x) = \frac{1}{f'(g(x))}.$$

- (12) The inverse of $f(x) = b^x$ is $f^{-1}(x) = \log_b(x)$
- (13) Logarithm Rules
 - (a) $\log_b(1) = \boxed{0}^{(18)}$ and $\log_b(b) = \boxed{1}^{(19)}$.
 - (b) $\log_b(xy) = \log_b(x) + \log_b(y)$ and $\log_b\left(\frac{x}{y}\right) = \log_b(x) \log_b(y)$ (21)
 - (c) Change of Base: $\frac{\log_a(x)}{\log_a(b)} = \frac{\log_b(x)}{\log_b(x)}$
 - (d) $\log_b(x^n) = \frac{n \log_b(x)}{n \log_b(x)}$
- (14) $\frac{x}{\ln}(x) = \begin{bmatrix} \frac{1}{x} \end{bmatrix}^{(24)}$ and $\frac{x}{\log_{10}}(x) = \begin{bmatrix} \frac{1}{\ln(b)x} \end{bmatrix}^{(25)}$
- (15) $\int \frac{1}{x} dx = \ln|x| + C$ (26).

PROBLEMS

(1) Calculate the derivative.

- (a) $f(x) = 7e^{2x} + 3e^{4x}$ SOLUTION: $f'(x) = 14e^{2x} + 12e^{4x}$.
- (b) $f(x) = e^{e^x}$ SOLUTION: $f'(x) = e^x e^{e^x}$
- (c) $f(x) = 3^x$ SOLUTION: $f'(x) = 3^x \ln(3)$ (d) $f(t) = \frac{1}{1 - e^{-3t}}$
- (d) $f(t) = \frac{1}{1 e^{-3t}}$ SOLUTION: $f'(t) = -3(1 - e^{-3t})^{-2}e^{-3t}$
- (e) $f(t) = \cos(te^{-2t})$ SOLUTION: $f'(t) = -\sin(te^{-2t})(e^{-2t} + -2te^{-2t})$
- (f) $\int_{4}^{e^{x}} \sin t \, dt$ SOLUTION: Recall that $\frac{x f(x)}{\int_{a}^{e^{x}} g(t) \, dt} = g(f(x))f'(x) \, dx$. So $\frac{d}{dx} \int_{4}^{e^{x}} \sin t \, dt = \sin(e^{x})e^{x}.$
- (g) $f(x) = x \ln x$ SOLUTION: $f'(x) = \ln x + 1$
- (h) $f(x) = \ln(x^5)$ SOLUTION: $f'(x) = \frac{5}{x}$
- (i) $f(x) = \ln(\sin(x) + 1)$ SOLUTION: $f'(x) = \frac{\cos(x)}{\sin(x) + 1}$
- (j) $f(x) = e^{\ln(x)^2}$ SOLUTION: $f'(x) = e^{(\ln x)^2} 2 \frac{\ln(x)}{x}$
- (k) $f(x) = \log_{\alpha}(\log_{b}(x))$ SOLUTION: $f'(x) = \frac{1}{\ln(\alpha) x \ln(x)}$
- (l) $f(x) = 16^{\sin x}$ SOLUTION: $f'(x) = \ln(16)\cos(x)16^{\sin x}$

(2) Calculate the integral.

- (a) $\int \frac{7}{x} dx$ SOLUTION: $7 \ln |x| + C$
- (b) $\int e^{4x} dx$ SOLUTION: $\frac{1}{4}e^{4x} + C$

(c)
$$\int \frac{\ln x}{x} dx$$

SOLUTION: Set $u = \ln x$, so $du = \frac{1}{x} dx$.

SOLUTION: Set $u = \ln x$, so $du = \frac{1}{x} dx$ Therefore,

$$\int \frac{\ln x}{x} \, dx = \int u \, du = \frac{u^2}{2} + C = \frac{1}{2} \ln(x)^2 + C.$$

(d) $\int \frac{1}{9x-3} dx$ SOLUTION: Let u = 9x - 3. Then du = 9dxand substituting gives

$$\int \frac{1}{9u} du = \frac{1}{9} \ln |u| + C = \frac{1}{9} \ln |9x - 3| + C.$$

- (e) $\int_{2}^{3} (e^{4t-3}) dt$ SOLUTION: $\int_{2}^{3} (e^{4t-3}) dt = e^{-3} \int_{2}^{3} e^{4t} dt = e^{-3} \left(\frac{1}{4}e^{4t}\right)\Big|_{2}^{3} = \frac{e^{-3}}{4} \left(e^{12} - e^{8}\right) = \frac{1}{4}(e^{9} - e^{5})$
- (f) $\int e^t \sqrt{e^t + 1} dt$ SOLUTION: Let $u = e^t + 1$. Then $du = e^t dt$, so the integral becomes

$$\int \sqrt{u} \, du = \frac{2}{3} u^{3/2} + C = \frac{2}{3} (e^t + 1)^{3/2} + C$$

- (g) $\int e^x \cos e^x dx$ Solution: Let $u = e^x$. Then $du = e^x dx$, so $\int e^x \cos e^x dx = \int \cos u = \sin u + C = \sin e^x + C.$
- (h) $\int \tan(4x+1) dx$ SOLUTION: First, rewrite the integral as

$$\int tan(4x+1) \ dx = \int \frac{sin(4x+1)}{cos(4x+1)} \ dx$$

then let $u = \cos(4x + 1)$, so $du = -4\sin(4x + 1) dx$. Hence,

$$\int \frac{\sin(4x+1)}{\cos(4x+1)} dx = -\frac{1}{4} \int \frac{1}{u} du = -\frac{1}{4} \ln|\cos(4x+1)| + C$$

(3) For each function shown below, sketch the graph of the inverse.

SOLUTION:

- (4) Calculate g(b) and g'(b), where g is the inverse of f.
 - (a) $f(x) = x + \cos x$, b = 1. SOLUTION: g(1) = 0, g'(1) = 1.
 - (b) $f(x) = 4x^3 2x$, b = -2. SOLUTION: g(-2) = -1, $g'(-2) = \frac{1}{10}$.
 - (c) $f(x) = \sqrt{x^2 + 6x}$ for $x \ge 0$, b = 4. Solution: g(4) = 2, $g'(4) = \frac{4}{5}$.
 - (d) $f(x) = \frac{1}{x+1}$, $b = \frac{1}{4}$. SOLUTION: g(1/4) = 3, g'(1/4) = -16.
- (5) Which of the following statements are true and which are false? If false, modify the statement to make it correct.
 - (a) If f is increasing, then f^{-1} is increasing. SOLUTION: True.
 - (b) If f is concave up, then f^{-1} is concave up. SOLUTION: False. Reflecting the graph of f across the line y = x to get the graph of f^{-1} means that if the graph of f is concave up, then the graph of f^{-1} is concave down.
 - (c) If f is odd then f^{-1} is odd. SOLUTION: Think of what the graph of an odd function looks like. Reflecting the graph across the line y = x preserves this property.
 - (d) Linear functions f(x) = ax + b are always one-to-one. SOLUTION: True. The inverse is $f^{-1}(x) = \frac{1}{a}(x-b)$.

(e) $f(x) = \sin(x)$ is one-to-one.

SOLUTION: False. The graph of $f(x) = \sin(x)$ fails the horizontal line test. But if we restrict the domain to $(-\pi, \pi)$, then this is true and $\arcsin(x)$ is the inverse of $\sin(x)$ on this domain.