NAME: SOLUTIONS

Math 1910
October 5, 2017

One-page Review

(1) $f(x)=b^{x}$ is increasing if $\quad b>1 \quad$ and decreasing if $b<1$
(2) The derivative of $f(x)=b^{x}$ is $\frac{d}{d x} b^{x}=b^{x} \ln (b)$
(3) $\frac{x^{x}}{e}=e^{x} \quad$ and $\frac{x^{f}(x)}{e}=f^{\prime}(x) e^{f(x)} \quad$ and $\frac{x^{k x+b}}{e}=k e^{k x+b}{ }^{(6)}$.
(4) $\int e^{x} d x=e^{x}+C \quad$ and $\int e^{k x+b}=\frac{1}{k} e^{k x+b}+C \quad$ for constants k, b.
(5) A function f with domain D is one to one if $f(x)=c$ has at most one solution with $x \in D$.
(6) Let f have domain D and range R. The inverse f^{-1} is the unique function with domain R and range D such that $\quad f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$
(7) The inverse of f exists if and only if f is one-to-one on its domain.
(8) Horizontal Line Test: f is one-to-one if and only if every horizontal line intersects the graph of f only once.
(9) To find the inverse function, solve $y=f(x)$ for $x x^{(13)}$ in terms of $y{ }^{(14)}$.
(10) The graph of f^{-1} is obtained by reflecting ${ }^{(15)}$ the graph of f through the line $y=x$.
(11) If f is differentiable and one-to-one with inverse g, then for x such that $f^{\prime}(g(x)) \neq 0$,

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))} .
$$

(12) The inverse of $f(x)=b^{x}$ is $\quad f^{-1}(x)=\log _{b}(x)$
(13) Logarithm Rules
(a) $\log _{\mathrm{b}}(1)=0 \quad$ and $\log _{\mathrm{b}}(\mathrm{b})=\square^{(18)}$.
(b) $\log _{b}(x y)=\log _{b}(x)+\log _{b}(y) \quad$ and $\log _{b}\left(\frac{x}{y}\right)=\log _{b}(x)-\log _{b}(y)$
(c) Change of Base: $\frac{\log _{a}(x)}{\log _{\boldsymbol{a}}(b)}=\log _{b}(x) \quad$.
(d) $\log _{b}\left(x^{n}\right)=n \log _{b}(x)$
(14) $\frac{x}{\ln }(x)=\frac{1}{x} \quad$ and $\frac{x}{\log _{b}}(x)=\frac{1}{\ln (b) x}$
(15) $\int \frac{1}{x} d x=\ln |x|+C \quad$.

Problems

(1) Calculate the derivative.
(a) $f(x)=7 e^{2 x}+3 e^{4 x}$

SOLUTION: $\mathrm{f}^{\prime}(\mathrm{x})=14 e^{2 x}+12 e^{4 x}$.
(b) $f(x)=e^{e^{x}}$

SOLUTION: $f^{\prime}(x)=e^{x} e^{e^{x}}$
(c) $f(x)=3^{x}$

SOLUTION: $\mathrm{f}^{\prime}(\mathrm{x})=3^{\mathrm{x}} \ln (3)$
(d) $f(t)=\frac{1}{1-e^{-3 t}}$

SOLUTION: $\mathrm{f}^{\prime}(\mathrm{t})=-3\left(1-e^{-3 \mathrm{t}}\right)^{-2} e^{-3 \mathrm{t}}$
(e) $f(t)=\cos \left(t e^{-2 t}\right)$

SOLUTION: $\quad f^{\prime}(\mathrm{t})=-\sin \left(t e^{-2 t}\right)\left(e^{-2 t}+\right.$ $\left.-2 t e^{-2 t}\right)$
(f) $\int_{4}^{e^{x}} \sin t d t$

SOLUTION: Recall that ${\frac{\int_{a}}{f(x)}}^{f(t) d t}=$ $g(f(x)) f^{\prime}(x) d x$. So

$$
\frac{d}{d x} \int_{4}^{e^{x}} \sin t d t=\sin \left(e^{x}\right) e^{x} .
$$

(g) $f(x)=x \ln x$

SOLUTION: $f^{\prime}(x)=\ln x+1$
(h) $f(x)=\ln \left(x^{5}\right)$

SOLUTION: $f^{\prime}(x)=\frac{5}{x}$
(i) $f(x)=\ln (\sin (x)+1)$

SOLUTION: $f^{\prime}(x)=\frac{\cos (x)}{\sin (x)+1}$
(j) $f(x)=e^{\ln (x)^{2}}$

SOLUTION: $f^{\prime}(x)=e^{(\ln x)^{2}} 2 \frac{\ln (x)}{x}$
(k) $f(x)=\log _{a}\left(\log _{b}(x)\right)$

SOLUTION: $\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{\ln (\mathrm{a}) \mathrm{x} \ln (\mathrm{x})}$
(l) $f(x)=16^{\sin x}$

SOLUTION: $\mathrm{f}^{\prime}(\mathrm{x})=\ln (16) \cos (x) 16^{\sin x}$
(2) Calculate the integral.
(a) $\int \frac{7}{x} d x$

Solution: $7 \ln |x|+C$
(b) $\int e^{4 x} d x$

SOLUTION: $\frac{1}{4} e^{4 \mathrm{x}}+\mathrm{C}$
(c) $\int \frac{\ln x}{x} d x$

Solution: Set $u=\ln x$, so $d u=\frac{1}{x} d x$. Therefore,
$\int \frac{\ln x}{x} d x=\int u d u=\frac{u^{2}}{2}+C=\frac{1}{2} \ln (x)^{2}+C$.
(d) $\int \frac{1}{9 x-3} d x$

Solution: Let $u=9 x-3$. Then $d u=9 \mathrm{dx}$ and substituting gives
$\int \frac{1}{9 u} d u=\frac{1}{9} \ln |u|+C=\frac{1}{9} \ln |9 x-3|+C$.
(e) $\int_{2}^{3}\left(e^{4 \mathrm{t}-3}\right) \mathrm{dt}$

SOLUTION: $\int_{2}^{3}\left(e^{4 \mathrm{t}-3}\right) \mathrm{dt}=\mathrm{e}^{-3} \int_{2}^{3} e^{4 \mathrm{t}} \mathrm{dt}=$
$\left.e^{-3}\left(\frac{1}{4} e^{4 t}\right)\right|_{2} ^{3}=\frac{e^{-3}}{4}\left(e^{12}-e^{8}\right)=\frac{1}{4}\left(e^{9}-\right.$
e^{5})
(f) $\int e^{t} \sqrt{e^{t}+1} d t$

Solution: Let $u=e^{t}+1$. Then $d u=e^{t} d t$, so the integral becomes
$\int \sqrt{u} d u=\frac{2}{3} u^{3 / 2}+C=\frac{2}{3}\left(e^{t}+1\right)^{3 / 2}+C$
(g) $\int e^{x} \cos e^{x} d x$

SOLUTION: Let $u=e^{x}$. Then $d u=e^{x} d x$, so
$\int e^{x} \cos e^{x} d x=\int \cos u=\sin u+C=\sin e^{x}+C$.
(h) $\int \tan (4 x+1) d x$

Solution: First, rewrite the integral as

$$
\int \tan (4 x+1) d x=\int \frac{\sin (4 x+1)}{\cos (4 x+1)} d x
$$

then let $u=\cos (4 x+1)$, so $d u=-4 \sin (4 x+$ 1) $d x$. Hence,
$\int \frac{\sin (4 x+1)}{\cos (4 x+1)} d x=-\frac{1}{4} \int \frac{1}{u} d u=-\frac{1}{4} \ln |\cos (4 x+1)|+C$
(3) For each function shown below, sketch the graph of the inverse.

(A)

(B)

(C)

(D)

(E)

(F)

SOLUTION:
(a)

(A)
(b)

(B)
(c)

(C)
(d)

(D)
(e)

(E)

(F)
(4) Calculate $g(b)$ and $g^{\prime}(b)$, where g is the inverse of f.
(a) $f(x)=x+\cos x, b=1$.

SOLUTION: $g(1)=0, g^{\prime}(1)=1$.
(b) $f(x)=4 x^{3}-2 x, b=-2$.

SOLUTION: $g(-2)=-1, g^{\prime}(-2)=\frac{1}{10}$.
(c) $f(x)=\sqrt{x^{2}+6 x}$ for $x \geq 0, b=4$.

SOLUTION: $g(4)=2, g^{\prime}(4)=\frac{4}{5}$.
(d) $f(x)=\frac{1}{x+1}, b=\frac{1}{4}$.

SOLUTION: $g(1 / 4)=3, g^{\prime}(1 / 4)=-16$.
(5) Which of the following statements are true and which are false? If false, modify the statement to make it correct.
(a) If f is increasing, then f^{-1} is increasing.

Solution: True.
(b) If f is concave up, then f^{-1} is concave up.

SOLUTION: False. Reflecting the graph of f across the line $y=x$ to get the graph of f^{-1} means that if the graph of f is concave up, then the graph of f^{-1} is concave down.
(c) If f is odd then f^{-1} is odd.

SOLUTION: Think of what the graph of an odd function looks like. Reflecting the graph across the line $y=x$ preserves this property.
(d) Linear functions $f(x)=a x+b$ are always one-to-one.

Solution: True. The inverse is $\mathrm{f}^{-1}(x)=\frac{1}{a}(x-b)$.
(e) $f(x)=\sin (x)$ is one-to-one.

SOLUTION: False. The graph of $f(x)=\sin (x)$ fails the horizontal line test. But if we restrict the domain to $(-\pi, \pi)$, then this is true and $\arcsin (x)$ is the inverse of $\sin (x)$ on this domain.

