NAME: SOLUTIONS

One-Page Review

(1) There are three numerical approximations to $\int_{a}^{b} f(x) d x$:
(a) The midpoint rule: $M_{N}=\Delta x\left(f\left(c_{1}\right)+\ldots+f\left(c_{N}\right)\right), c_{j}=a+\left(j+\frac{1}{2}\right) \Delta x$.
(b) The trapezoid rule: $T_{N}=\frac{1}{2} \Delta x\left(y_{0}+2 y_{1}+2 y_{2}+\ldots+2 y_{N-1}+y_{N}\right)$
(c) Simpson's rule: $S_{N}=\frac{1}{3} \Delta x\left(y_{0}+4 y_{1}+2 y_{2}+\ldots+4 y_{N-3}+2 y_{N-2}+4 y_{N-1}+y_{N}\right)$
(2) The arc length of $f(x)$ on the interval $[a, b]$ is $\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x$.
(3) The surface area of the surface obtained by rotating the graph of $f(x)$ around the x-axis for $a \leq x \leq b$ is $\quad 2 \pi \int_{a}^{b} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x$.
(4) The n-th Taylor Polynomial centered at $x=a$ for the function f is

$$
T_{n}(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

(5) The error for the n-th Taylor Polynomial is

$$
\left|T_{n}(x)-f(x)\right| \leq K \frac{|x-a|^{n+1}}{(n+1)!}
$$

where K is the maximum of $\left|f^{(n+1)}(u)\right|$ over all u between a and x.
(6) Taylor's Theorem says that

$$
R_{n}(x)=T_{n}(x)-f(x)=\frac{1}{n!} \int_{a}^{x}(x-u)^{n} f^{(n+1)}(u) d u .
$$

Problems

(1) Find the T_{4} approximation for $\int_{0}^{4} \sqrt{x} d x$.

SOLUTION: Let $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$. We divide $[0,4]$ into 4 subintervals of width

$$
\Delta x=\frac{4-0}{4}=1
$$

with endpoints $0,1,2,3,4$. With this data, we get

$$
\mathrm{T}_{4}=\frac{1}{2} \Delta x(\sqrt{0}+2 \sqrt{1}+2 \sqrt{2}+2 \sqrt{3}+\sqrt{4}) \approx 5.14626
$$

(2) State whether M_{10} underestimates or overestimates $\int_{1}^{4} \ln (x) d x$.

SOLUTION: Let $f(x)=\ln (x)$. Then $f^{\prime}(x)=\frac{1}{x}$ and

$$
f^{\prime \prime}(x)=-\frac{1}{x^{2}}<0
$$

on the interval $[1,4]$, so $f(x)$ is concave down. Therefore, the midpoint rule overestimates the integral.
(3) For the curve curve $y=\ln (\cos x)$ over the interval $[0, \pi / 4]$, set up an integral to calculate:
(a) the arc length.

Solution: First, calculate

$$
1+\left(y^{\prime}\right)^{2}=1+\tan ^{2}(x)=\sec ^{2}(x)
$$

so the arc length is

$$
\int_{0}^{\pi / 4} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\int_{0}^{\pi / 4} \sqrt{\sec ^{2}(x)} d x=\int_{0}^{\pi / 4} \sec (x) d x=\left.\ln |\sec (x)+\tan (x)|\right|_{0} ^{\pi / 4}=\ln |\sqrt{2}+1|
$$

(b) the surface area when rotated around the x-axis.

SOLUTION: As in the previous part, we have

$$
1+\left(y^{\prime}\right)^{2}=\sec ^{2}(x)
$$

Therefore, plug into the arc length formula

$$
\text { Surface Area }=2 \pi \int_{0}^{\pi / 4} y \sqrt{1+\left(y^{\prime}\right)^{2}}=2 \pi \int_{0}^{\pi / 4} \ln (\cos (x)) \sec (x) d x
$$

(4) Approximate the arc length of the curve $y=\sin (x)$ over the interval $[0, \pi / 2]$ using the midpoint approximation M_{8}.
SOLUTION: Since $y=\sin (x)$, we have

$$
1+\left(y^{\prime}\right)^{2}=1+\cos ^{2}(x)
$$

Therefore, $\sqrt{1+\left(y^{\prime}\right)^{2}}=\sqrt{1+\cos ^{2}(x)}$, and the arc length over $[0, \pi / 2]$ is

$$
\int_{0}^{\pi / 2} \sqrt{1+\cos ^{2}(x)} d x
$$

Let $f(x)=\sqrt{1+\cos ^{2}(x)} . M_{8}$ is the midpoint approximation with eight subdivisions. So

$$
\begin{aligned}
\Delta x & =\frac{\pi / 2-0}{8}=\frac{\pi}{16} \\
x_{i} & =0+\left(i-\frac{1}{2}\right) \Delta x \quad \text { for } i=1,2, \ldots, 8 \\
y_{i} & =f\left(\left(i-\frac{1}{2}\right) \Delta x\right) \\
M_{8} & =\sum_{i=1}^{8} y_{i} \Delta x=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{8}\right) \Delta x
\end{aligned}
$$

i	x_{i}	$f\left(x_{i}\right)=y_{i}$
1	0.5	1.41081

2	1.5	1.3841

3	2.5	1.3333

4	3.5	1.26394

5	4.5	1.18425

6	5.5	1.10554

7	6.5	1.04128

$$
\begin{array}{lll}
8 & 7.5 & 1.00479
\end{array}
$$

The final answer is that the arc length is approximately 1.9101 .
(5) Find the Taylor polynomials $T_{2}(x)$ and $T_{3}(x)$ for $f(x)=\frac{1}{1+x}$ centered at $a=1$. SOLUTION: We need to take a few derivatives, and then plug in $a=1$ to each one.

n	n -th derivative $\mathrm{f}^{(n)}(\mathrm{x})$	$\mathrm{f}^{(n)}(\mathrm{a})$
0	$f(x)=\frac{1}{1+x}$	$f(1)=1 / 2$
1	$f^{\prime}(x)=\frac{-1}{(1+x)^{2}}$	$f^{\prime}(1)=-1 / 4$
2	$f^{\prime \prime}(x)=\frac{2}{(1+x)^{3}}$	$f^{\prime \prime}(1)=1 / 4$
3	$f^{\prime \prime \prime}(x)=\frac{-6}{(1+x)^{4}}$	$f^{\prime \prime \prime}(1)=-3 / 8$

Then plug these values into the formula for the Taylor polynomial.

$$
\begin{gathered}
T_{2}(x)=\frac{1}{2}-\frac{(x-1)}{4}+\frac{(x-1)^{2}}{8} \\
T_{3}(x)=\frac{1}{2}-\frac{(x-1)}{4}+\frac{(x-1)^{2}}{8}-\frac{(x-1)^{3}}{16}
\end{gathered}
$$

(6) Find n such that $\left|T_{n}(1.3)-\sqrt{1.3}\right| \leq 10^{-6}$, where T_{n} is the Taylor polynomial for \sqrt{x} at $a=1$.

SOLUTION: By the error formula, we have that

$$
\left|T_{n}(1.3)-\sqrt{1.3}\right| \leq \frac{K_{n+1}(1.3-1)^{n+1}}{(n+1)!}
$$

So we just need to find n such that

$$
\frac{K_{n+1}(0.3)^{n+1}}{(n+1)!}<10^{-6}
$$

where K_{n+1} is the maximum value of the $(n+1)$-st derivative of $f(x)=\sqrt{x}$ between 1 and 1.3. Since $f^{(n+1)}(x)$ is the $(n+1)$-st derivative of \sqrt{x}, and this always has x in the denominator for any $n \geq 0$, this maximum will always occur at $x=1$. Therefore, in this case,

$$
K_{n+1}=\left|f^{(n+1)}(1)\right| .
$$

So we just need to find n such that

$$
\frac{\left|f^{(n+1)}(1)\right|(0.3)^{n+1}}{(n+1)!}<10^{-6}
$$

The hard part is finding a pattern for the n-th derivative of \sqrt{x}, but that's not strictly necessary, although possible. If you keep taking derivatives of \sqrt{x} and plugging into the formula, you find that this is valid for $n \geq 7$.
Alternatively, the general formula for the n-th derivative of \sqrt{x} is

$$
f^{(n)}(x)=(-1)^{n+1} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-3)}{2^{n}} x^{\frac{-(2 n-1)}{2}}
$$

Then you can plug this in to the previous formula.

