NAME: SOLUTIONS November 02, 2017

ONE-PAGE REVIEW

- (1) There are three numerical approximations to $\int_{a}^{b} f(x) dx$:
 - (a) The **midpoint rule**: $M_N = \Delta x (f(c_1) + ... + f(c_N)), c_j = a + (j + \frac{1}{2}) \Delta x.$
 - (b) The **trapezoid rule**: $T_N = \frac{1}{2} \Delta x (y_0 + 2y_1 + 2y_2 + ... + 2y_{N-1} + y_N)$
 - (c) Simpson's rule: $S_N = \frac{1}{3}\Delta x (y_0 + 4y_1 + 2y_2 + ... + 4y_{N-3} + 2y_{N-2} + 4y_{N-1} + y_N)$
- (2) The **arc length** of f(x) on the interval [a, b] is $\int_{a}^{b} \sqrt{1 + f'(x)^2} dx.$
- (3) The **surface area** of the surface obtained by rotating the graph of f(x) around the x-axis for $a \le x \le b$ $2\pi \int_{a}^{b} f(x)\sqrt{1+f'(x)^2} dx.$
- (4) The n-th Taylor Polynomial centered at x = a for the function f is

$$T_{n}(x) = \begin{bmatrix} f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^{2} + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^{n}. \end{bmatrix}^{(3)}$$

(5) The error for the n-th Taylor Polynomial is

$$|T_n(x) - f(x)| \le K \frac{|x - a|^{n+1}}{(n+1)!}$$
,

where K is the maximum of $|f^{(n+1)}(u)|$ over all u between a and x.

(6) Taylor's Theorem says that

$$R_{n}(x) = T_{n}(x) - f(x) = \frac{1}{n!} \int_{\alpha}^{x} (x - u)^{n} f^{(n+1)}(u) du.$$
 (5)

1

PROBLEMS

(1) Find the T_4 approximation for $\int_0^4 \sqrt{x} dx$.

SOLUTION: Let $f(x) = \sqrt{x}$. We divide [0,4] into 4 subintervals of width

$$\Delta x = \frac{4-0}{4} = 1,$$

with endpoints 0, 1, 2, 3, 4. With this data, we get

$$T_4 = \frac{1}{2} \Delta x \left(\sqrt{0} + 2\sqrt{1} + 2\sqrt{2} + 2\sqrt{3} + \sqrt{4} \right) \left[\approx 5.14626. \right]$$

(2) State whether M_{10} underestimates or overestimates $\int_{1}^{4} \ln(x) dx$.

SOLUTION: Let $f(x) = \ln(x)$. Then $f'(x) = \frac{1}{x}$ and

$$f''(x) = -\frac{1}{x^2} < 0$$

on the interval [1,4], so f(x) is concave down. Therefore, the midpoint rule overestimates the integral.

- (3) For the curve curve $y = \ln(\cos x)$ over the interval $[0, \pi/4]$, set up an integral to calculate:
 - (a) the arc length.

SOLUTION: First, calculate

$$1 + (y')^2 = 1 + \tan^2(x) = \sec^2(x)$$

so the arc length is

$$\int_0^{\pi/4} \sqrt{1 + (y')^2} \, dx = \int_0^{\pi/4} \sqrt{\sec^2(x)} \, dx = \int_0^{\pi/4} \sec(x) \, dx = \ln|\sec(x) + \tan(x)| \Big|_0^{\pi/4} = \boxed{\ln|\sqrt{2} + 1|}$$

(b) the surface area when rotated around the x-axis.

SOLUTION: As in the previous part, we have

$$1 + (y')^2 = \sec^2(x)$$

Therefore, plug into the arc length formula

Surface Area =
$$2\pi \int_0^{\pi/4} y \sqrt{1 + (y')^2} = 2\pi \int_0^{\pi/4} \ln(\cos(x)) \sec(x) dx$$

(4) Approximate the arc length of the curve $y = \sin(x)$ over the interval $[0, \pi/2]$ using the midpoint approximation M_8 .

SOLUTION: Since $y = \sin(x)$, we have

$$1 + (y')^2 = 1 + \cos^2(x)$$

2

Therefore, $\sqrt{1+(y')^2} = \sqrt{1+\cos^2(x)}$, and the arc length over $[0,\pi/2]$ is

$$\int_0^{\pi/2} \sqrt{1 + \cos^2(x)} \, dx.$$

Let $f(x) = \sqrt{1 + \cos^2(x)}$. M_8 is the midpoint approximation with eight subdivisions. So

$$\Delta x = \frac{\pi/2 - 0}{8} = \frac{\pi}{16}$$

$$x_i = 0 + (i - \frac{1}{2})\Delta x \qquad \text{for } i = 1, 2, ..., 8$$

$$y_i = f\left((i - \frac{1}{2})\Delta x\right)$$

$$M_8 = \sum_{i=1}^8 y_i \Delta x = f(x_1)\Delta x + f(x_2)\Delta x + ... + f(x_8)\Delta x$$

$$\frac{i \quad x_i \quad f(x_i) = y_i}{1 \quad 0.5 \quad 1.41081}$$

$$2 \quad 1.5 \quad 1.3841$$

$$3 \quad 2.5 \quad 1.3333$$

$$4 \quad 3.5 \quad 1.26394$$

$$5 \quad 4.5 \quad 1.18425$$

$$6 \quad 5.5 \quad 1.10554$$

$$7 \quad 6.5 \quad 1.04128$$

$$8 \quad 7.5 \quad 1.00479$$

The final answer is that the arc length is approximately 1.9101

(5) Find the Taylor polynomials $T_2(x)$ and $T_3(x)$ for $f(x) = \frac{1}{1+x}$ centered at a = 1. SOLUTION: We need to take a few derivatives, and then plug in a = 1 to each one.

n | n-th derivative
$$f^{(n)}(x)$$
 | $f^{(n)}(a)$
0 | $f(x) = \frac{1}{1+x}$ | $f(1) = 1/2$
1 | $f'(x) = \frac{-1}{(1+x)^2}$ | $f'(1) = -1/4$
2 | $f''(x) = \frac{2}{(1+x)^3}$ | $f'''(1) = 1/4$
3 | $f'''(x) = \frac{-6}{(1+x)^4}$ | $f'''(1) = -3/8$

Then plug these values into the formula for the Taylor polynomial.

$$T_2(x) = \frac{1}{2} - \frac{(x-1)}{4} + \frac{(x-1)^2}{8}$$

$$T_3(x) = \frac{1}{2} - \frac{(x-1)}{4} + \frac{(x-1)^2}{8} - \frac{(x-1)^3}{16}$$

(6) Find n such that $|T_n(1.3) - \sqrt{1.3}| \le 10^{-6}$, where T_n is the Taylor polynomial for \sqrt{x} at $\alpha = 1$.

3

SOLUTION: By the error formula, we have that

$$|T_n(1.3) - \sqrt{1.3}| \le \frac{K_{n+1}(1.3-1)^{n+1}}{(n+1)!}$$

So we just need to find n such that

$$\frac{K_{n+1}(0.3)^{n+1}}{(n+1)!} < 10^{-6},$$

where K_{n+1} is the maximum value of the (n+1)-st derivative of $f(x) = \sqrt{x}$ between 1 and 1.3. Since $f^{(n+1)}(x)$ is the (n+1)-st derivative of \sqrt{x} , and this always has x in the denominator for any $n \ge 0$, this maximum will always occur at x = 1. Therefore, in this case,

$$K_{n+1} = |f^{(n+1)}(1)|.$$

So we just need to find n such that

$$\frac{|f^{(n+1)}(1)|(0.3)^{n+1}}{(n+1)!} < 10^{-6}.$$

The hard part is finding a pattern for the n-th derivative of \sqrt{x} , but that's not strictly necessary, although possible. If you keep taking derivatives of \sqrt{x} and plugging into the formula, you find that this is valid for $n \ge 7$.

Alternatively, the general formula for the n-th derivative of \sqrt{x} is

$$f^{(n)}(x) = (-1)^{n+1} \frac{1 \cdot 3 \cdot 5 \cdots (2n-3)}{2^n} x^{\frac{-(2n-1)}{2}}$$

Then you can plug this in to the previous formula.