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(1) There are three numerical approximations to J f(x) dx:
a

(@) The midpoint rule: My = Ax (f(cy) +...+f(ecn)), ¢j =a+ (j + %) Ax.
(b) The trapezoid rule: Ty = %Ax (Yo+2y1+2y2+...+2yn—_1 +yn)

. 1
(c) Simpson’s rule: S\ = gAx (yo+4y1+2y2+...+4yn_3+2yn_2 +4yn—_1 +yn)

b
(2) The arc length of f(x) on the interval [a, b] is J 1+ f/(x)? dx.

a

(3) The surface area of the surface obtained by rotating the graph of f(x) around the x-axis fora <x <b

b
is ZHJ f(x)\/1+f/(x)% dx.

a

(4) The n-th Taylor Polynomial centered at x = a for the function f is

(5) The error for the n-th Taylor Polynomial is

|X— a‘n+1
T (x) —f(x)| < KW ’

where K is the maximum of |f("*+1) (u)| over all u between a and x.

(6) Taylor’s Theorem says that



PROBLEMS

4
(1) Find the T4 approximation for J' Vx dx.
0

SOLUTION: Let f(x) = 1/x. We divide [0,4] into 4 subintervals of width

A
XT Ty

1,

with endpoints 0, 1, 2, 3,4. With this data, we get

T = 38 (VO +2vT+2v2+2V3 + Va) [~ 514626

V]l

(2) State whether My underestimates or overestimates J In(x) dx.
1

SOLUTION: Let f(x) = In(x). Then f'(x) = + and

X

on the interval [1,4], so f(x) is concave down. Therefore, the midpoint rule overestimates the integral.

(3) For the curve curve y = In(cos x) over the interval [0, 7"/4], set up an integral to calculate:
(a) the arc length.
SOLUTION: First, calculate

1+ (g’)z =1+ tan?(x) = sec?(x),

so the arc length is

/4 /4 /4 /4
J 1+ (y")? dx:J \/sec?(x) dx:J sec(x) dx = In|sec(x) + tan(x)| =|In|vV2+1|

0 0 0 0

(b) the surface area when rotated around the x-axis.
SOLUTION: As in the previous part, we have

1+ (y')2 = sec? (x)

Therefore, plug into the arc length formula

/4 /4
Surface Area = ZnJ Y/ 1+ (y)2 = 27‘[J’ In(cos(x)) sec(x) dx
0 0

(4) Approximate the arc length of the curve y = sin(x) over the interval [0,”/;] using the midpoint
approximation Mg.
SOLUTION: Since y = sin(x), we have

%(

1+(y’)2 =1+ cos”(x)



Therefore, /1 + (y/)2 = /1 + cos?(x), and the arc length over [0,7t/2] is

/2
J 1+ cos?(x) dx.
0

Let f(x) = /1 + cos?(x). Mg is the midpoint approximation with eight subdivisions. So

/2—0 7T
M= "%
xi=O+(i—%)Ax fori=1,2,...,8
yi=f ((i- 1))

8

Mg =Y yilx = f(x1)Ax + f(x2)Ax + ...+ f(xg) Ax

i=1

xi  flxi) =y;
0.5 1.41081
1.5 1.3841

25 1.3333

3.5 1.263%4
45 1.18425
55 1.10554
6.5 1.04128
7.5 1.00479

The final answer is that the arc length is approximately | 1.9101 |.

(5) Find the Taylor polynomials T, (x) and T3(x) for f(x) = 1]? centered at a = 1.

SOLUTION: We need to take a few derivatives, and then plug in a = 1 to each one.

0 N O Ul AW N = e

n | n-th derivative f™) (x) | f")(a)

0 f(x):]lx f(1)=1/2

1 f’(x):(];]x)z /(1) =—1/4
2 f”(x):U —|—2x)3 (1) =1/4
=gy | =3

Then plug these values into the formula for the Taylor polynomial.

_ _ 112
Tz(x):%*(x41)+(x 81)

_ _1)2 _1\3
TS(X):%i(x41)+(x 81) 7(x161)

(6) Find n such that [T,,(1.3) — v/1.3] < 10~°, where T, is the Taylor polynomial for \/x ata = 1.



SOLUTION: By the error formula, we have that

Kpy1 (13— 1)+

Ta(1.3) — V13| < CERT

So we just need to find n such that

where K, 1 is the maximum value of the (n + 1)-st derivative of f(x) = y/x between 1 and 1.3. Since
f(+1)(x) is the (n 4 1)-st derivative of \/x, and this always has x in the denominator for any n > 0,
this maximum will always occur at x = 1. Therefore, in this case,

K1 = [T (1)].

So we just need to find n such that

[ (1)](0.3)™+

—6
n+ 1) <10

The hard part is finding a pattern for the n-th derivative of \/x, but that’s not strictly necessary,
although possible. If you keep taking derivatives of y/x and plugging into the formula, you find that

this is valid for .

Alternatively, the general formula for the n-th derivative of \/x is

1-3.5...(2n—3) —n-
) ) = (e D22 B 3), =g

Then you can plug this in to the previous formula.



