(1) Find the following indefinite integrals.
(a) $\int\left(5 x^{3}-x^{-2}-x^{3 / 5}\right) d x$
ANSWER: $\frac{5}{4} x^{4}+x^{-1}-\frac{5}{8} x^{8 / 5}+C$
(b) $\int \frac{3}{x^{3 / 2}} d x \quad$ ANSWER: $-\frac{6}{x^{1 / 2}}+C$
(c) $\int \frac{x^{2}+2 x-3}{x^{4}} d x \quad$ ANSWER: $-x^{-1}-x^{-2}+x^{-3}+C$
(d) $\int 18 \cos (3 z+8) d z \quad$ ANSWER: $6 \sin (3 z+8)+C$
(2) If $f^{\prime \prime}(x)=x^{3}-2 x+1, f^{\prime}(0)=0$, and $f(0)=0$, first find f^{\prime} and then find f. ANSWER: $f^{\prime}(x)=\frac{x^{4}}{4}-x^{2}+x$ and $f(x)=\frac{x^{5}}{20}-\frac{x^{3}}{3}+\frac{x^{2}}{2}$.
(3) Evaluate the sums. (You may use a calculator to do simple arithmetic.)
(a) $\sum_{k=1}^{20} 2 k+1 \quad$ ANSWER: 440.
(b) $\sum_{j=1}^{10} \mathfrak{j}^{3}+2 j^{2} \quad$ ANSWER: 3795.
(c) $\sum_{j=101}^{200} j \quad$ ANSWER: 15050.
(4) Consider the function $f(x)=x^{2}$ on the interval $[0,1]$. Find a formula for R_{N} and compute the area under the graph as a limit. You may use the formula $\sum_{j=1}^{N} j^{2}=\frac{N(N+1)(2 N+1)}{6}$.
SOLUTION: If we have N rectangles over the interval $[0,1]$, then the width of each rectangle will be $\Delta x=1 / N$. The height of the i-th rectangle will be $f(i \Delta x)=f(i / N)=i^{2} / N^{2}$. So, summing up the area of all of these N rectangles, we find that

$$
R_{N}=\sum_{i=1}^{N} \frac{i^{2}}{N^{2}} \frac{1}{N}=\frac{1}{N^{3}} \sum_{i=1}^{N} i^{2}=\frac{1}{N^{3}}\left(\frac{N(N+1)(2 N+1)}{6}\right)=\frac{1}{3}+\frac{1}{2 N}+\frac{1}{6 N^{2}} .
$$

Then, the area under the graph is the $\operatorname{limit}^{\lim _{N \rightarrow \infty}} R_{N}$, so we have

$$
\lim _{N \rightarrow \infty} R_{N}=\lim _{N \rightarrow \infty}\left(\frac{1}{3}+\frac{1}{2 N}+\frac{1}{6 N^{2}}\right)=\frac{1}{3}
$$

(5) Let $f(x)$ be the function plotted below.

Compute the following integrals.
(a) $\int_{0}^{5} f(x) d x \quad$ ANSWER: 9
(b) $\int_{0}^{5}|f(x)| d x \quad$ ANSWER: 13
(6) Compute the following definite integrals without using the Fundamental Theorem of Calculus. (Hint: draw a picture.)
(a) $\int_{1}^{3}|2 x-4| d x \quad$ ANSWER: 2.
(b) $\int_{0}^{\pi} \cos x d x \quad$ ANSWER: 0 .
(c) $\int_{2}^{6} \sqrt{4-(x-4)^{2}} d x \quad$ ANSWER: 2π.
(7) Recall that a function is called even if $f(-x)=f(x)$ for all x, and a function is called odd if $f(-x)=-f(x)$ for all x. Explain graphically:
(a) If $f(x)$ is an odd function, $\int_{-a}^{a} f(x) d x=0$.

SOLUTION: If $f(x)$ is an odd function, then its graph is symmetric under rotation about the origin. $\left(f(x)=x^{3}\right.$ and $f(x)=\sin (x)$ are examples.) The positive and negative portions of the integral cancel, once we split it at $x=0$.
(b) If $f(x)$ is an even function $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$.

SOLUTION: If $f(x)$ is an even function, then its graph is symmetric under rotation reflection across the y-axis. $\left(f(x)=x^{2}\right.$ and $f(x)=\cos (x)$ are examples.) The portions of the integral to the left of the y-axis and the right of the y-axis are reflections of one another, so have the same area.
(8) Evaluate $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=1}^{N} \sqrt{1-\left(\frac{j}{N}\right)^{2}}$ by interpreting the limit as an area.

SOLUTION: The limit represents the area between the graph of $y=f(x)=\sqrt{1-x^{2}}$ and the x-axis over the interval $[0,1]$. This is the portion of the circular disk $x^{2}+y^{2} \leq 1$ that lies in the first quadrant. Accordingly, its area is $\frac{1}{4} \pi(1)^{2}=\frac{\pi}{4}$.

