PROBLEM SET

$\S 5.2$ (Definite Integrals), $\S 5.3$ (Indefinite Integrals)

NAME: \qquad
(1) Find the following indefinite integrals.
(a) $\int\left(5 x^{3}-x^{-2}-x^{3 / 5}\right) d x$
(b) $\int \frac{3}{x^{3 / 2}} d x$
(c) $\int \frac{x^{2}+2 x-3}{x^{4}} d x$
(d) $\int 18 \cos (3 z+8) d z$
(2) If $f^{\prime \prime}(x)=x^{3}-2 x+1, f^{\prime}(0)=0$, and $f(0)=0$, first find f^{\prime} and then find f.
(3) Evaluate the sums. (You may use a calculator to do simple arithmetic.)
(a) $\sum_{k=1}^{20} 2 k+1$
(b) $\sum_{j=1}^{10} j^{3}+2 j^{2}$
(c) $\sum_{j=101}^{200} j$
(4) Consider the function $f(x)=x^{2}$ on the interval $[0,1]$. Find a formula for R_{N} and compute the area under the graph as a limit. You may use the formula $\sum_{j=1}^{N} j^{2}=\frac{N(N+1)(2 N+1)}{6}$.
(5) Let $f(x)$ be the function plotted below.

Compute the following integrals.
(a) $\int_{0}^{5} f(x) d x$
(b) $\int_{0}^{5}|f(x)| d x$
(6) Compute the following definite integrals without using the Fundamental Theorem of Calculus. (Hint: draw a picture.)
(a) $\int_{1}^{3}|2 x-4| d x$
(b) $\int_{0}^{\pi} \cos x d x$
(c) $\int_{2}^{6} \sqrt{4-(x-4)^{2}} d x$
(7) Recall that a function is called even if $f(-x)=f(x)$ for all x, and a function is called odd if $f(-x)=-f(x)$ for all x. Explain graphically:
(a) If $f(x)$ is an odd function, $\int_{-a}^{a} f(x) d x=0$.
(b) If $f(x)$ is an even function $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$.
(8) Evaluate $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=1}^{N} \sqrt{1-\left(\frac{j}{N}\right)^{2}}$ by interpreting the limit as an area.

