The Fundamental Theorem of Calculus, Part I. If F(x) is an antiderivative for f(x), then

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

(2) Use the Fundamental Theorem of Calculus Part II to evaluate the following integrals.

(a)
$$\int_0^3 x^3 dx$$
 SOLUTION: $\int_0^3 x^3 dx = \frac{x^4}{4} \Big|_0^3 = \frac{3^4}{4} - \frac{0^4}{4} = \frac{81}{4}$.

(b)
$$\int_{\pi}^{3\pi/2} \cos(x) dx$$
 Solution: $\int_{\pi}^{3\pi/2} \cos(x) dx = \sin(3\pi/2) - \sin(\pi) = -1 - 0 = -1$.

(c)
$$\int_{e}^{e^2} \frac{1}{x} dx$$
 Solution: $\int_{e}^{e^2} \frac{1}{x} dx = \ln(x) \Big|_{e}^{e^2} = \ln(e^2) - \ln(e) = 2 - 1 = 1$.

The Fundamental Theorem of Calculus, Part II. If f is continuous on [a, b], then for every x in [a, b],

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{\alpha}^{x} f(t) \, \mathrm{d}t = f(x)$$

- (1) For the following problems, use the Fundamental Theorem of Calculus Part I to find F'(x).
 - (a) $F(x) = \int_{1}^{x} \sqrt[4]{t} dt$ SOLUTION: $F'(x) = \sqrt[4]{x}$
 - (b) $F(x) = \int_x^0 \sec^3 t \, dt$ Solution: $F'(x) = \frac{d}{dx} \int_x^0 \sec^3 t \, dt = \frac{d}{dx} \left(-\int_0^x \sec^3(t) \, dt \right) = -\frac{d}{dx} \int_0^x \sec^3(t) \, dt = -\sec^3(x)$
 - (c) $F(x) = \int_2^{x^2} \frac{1}{t^3} dt$. (Don't forget the chain rule!) SOLUTION: Let $G(x) = \int_2^x \frac{1}{t^3} dt$. Then $F(x) = G(x^2)$; now we may apply the chain rule.

$$\frac{d}{dx}F(x) = \frac{d}{dx}G(x^2) = G'(x^2) \cdot 2x$$

So what is $G'(x^2)$? Well, by FTC I, $G'(x) = \frac{1}{x^3}$, so $G'(x^2) = \frac{1}{x^6}$. Therefore,

$$F'(x) = G'(x^2) \cdot 2x = \frac{1}{x^6} \cdot 2x = \frac{2}{x^5}$$

(d) $F(x) = \int_{-x}^{3x} \sqrt{t^2 + 1} dt$ SOLUTION:

$$\frac{d}{dx} \int_{-x}^{3x} \sqrt{t^2 + 1} \, dt = \frac{d}{dx} \left(\int_{-x}^{0} \sqrt{t^2 + 1} \, dt + \int_{0}^{3x} \sqrt{t^2 + 1} \, dt \right)$$

$$= \frac{d}{dx} \left(-\int_{0}^{-x} \sqrt{t^2 + 1} \, dt \right) + \frac{d}{dx} \int_{0}^{3x} \sqrt{t^2 + 1} \, dt$$

$$= \frac{d}{dx} \left(F(3x) - F(-x) \right)$$

$$= F'(x) \cdot 3 - F'(x) \cdot (-1)$$

$$= 3\sqrt{9x^2 + 1} + \sqrt{x^2 + 1}$$