(1) If f is increasing and concave up on an interval [a, b], is the left-endpoint approximation more accurate or is the right-endpoint approximation more accurate? Why? What if f is increasing and concave down?

SOLUTION: If f is increasing and concave up, then the left-endpoint approximation is more accurate. If f is increasing and concave down, then the right-endpoint approximation is more accurate.
(2) Evaluate the limit by interpreting as an integral, where a is an arbitrary constant.

$$
\lim _{N \rightarrow \infty} \frac{\left(\frac{N+1}{N}\right)^{a}+\left(\frac{N+2}{N}\right)^{a}+\ldots+\left(\frac{N+N}{N}\right)^{a}}{N}
$$

Solution: Let's first rewrite the limit.

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left(1+\frac{i}{N}\right)^{a}
$$

Then as with previous problems, we interpret this as a Riemann sum. $\Delta x=\frac{1}{N}$, and $x_{i}=\frac{i}{N}$, and so $f(x)=x^{a}$. The left endpoint of the interval we are integrating over is 1 , and the right endpoint is 2 . Therefore,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left(1+\frac{i}{N}\right)^{a}=\int_{1}^{2} x^{a} d x=\left.\frac{x^{a+1}}{a+1}\right|_{1} ^{2}=\frac{2^{a+1}-1^{a+1}}{a+1} .
$$

(3) Calculate the derivative.
(a) $\frac{d}{d x} \int_{3}^{x} \sin \left(\mathrm{t}^{3}\right) \mathrm{dt}$ Solution: $\sin \left(x^{3}\right) d x$
(b) $\frac{\mathrm{d}}{\mathrm{dx}} \int_{4 \mathrm{x}^{2}}^{9} \frac{1}{\mathrm{t}} \mathrm{dt}$ Solution:

$$
\frac{d}{d x} \int_{4 x^{2}}^{9} \frac{1}{t} d t=-\frac{d}{d x} \int_{9}^{4 x^{2}} \frac{1}{t} d t=-\frac{1}{4 x^{2}} \cdot 8 x=\frac{-2}{x}
$$

(4) Express the antiderivative $F(x)$ of $f(x)$ as an integral, given that $f(x)=\sqrt{x^{4}+1}$ and $F(3)=0$.

SOLUTION: The antiderivative $F(x)$ of $f(x)=\sqrt{x^{4}+1}$ satisfying $F(3)=0$ is

$$
F(x)=\int_{3}^{x} \sqrt{t^{4}+1} d t
$$

(5) Show that a particle, located at the origin at time $t=1$ and moving along the x-axis with velocity $v(\mathrm{t})=\mathrm{t}^{-2}$, will never pass the point $\mathrm{x}=2$.
Solution: Note that this displacement is given by

$$
x(\mathrm{t})=\int v(\mathrm{t}) \mathrm{dt}=-\mathrm{t}^{-1}+\mathrm{C}
$$

and we may determine the constant C by the data that $x(1)=0$, so $C=-1$. Hence, $x(t)=-t^{-1}-1$, which is always less than two.
(6) Show that a particle, located at the origin at time $t=1$ and moving along the x-axis with velocity $v(\mathrm{t})=\mathrm{t}^{-1 / 2}$, moves arbitrarily far from the origin after sufficient time has elapsed.
SOLUTION: Like the previous question, we need to find the displacement.

$$
x(t)=\int v(t) d t=\int t^{-1 / 2} d t=2 \sqrt{t}+C
$$

It doesn't matter what C is in this case (although we can figure it out using $x(1)=0$), because

$$
\lim _{t \rightarrow \infty} 2 \sqrt{t}+C=\infty
$$

so the particle can be found arbitrarily far from the origin after sufficient time.
(7) Evaluate the indefinite integral

$$
\int \tan x \sec ^{2} x d x
$$

in two ways: first using $u=\tan x$ and then using $u=\sec x$. What's going on here?
Solution: The two substitutions yield two different antiderivatives: $\frac{1}{2} \tan ^{2} x+C$ and $\frac{1}{2} \sec ^{2} x+C$. But recall that two antiderivatives for a function must differ by a constant! Indeed, using the identity $\tan ^{2} x+1=\sec ^{2} x$, we see that

$$
\frac{1}{2} \sec ^{2} x-\frac{1}{2} \tan ^{2} x=\frac{1}{2}
$$

(8) Evaluate the indefinite integral.
(a) $\int x(x+1)^{9} d x$

Solution: Let $u=x+1$. Then $x=u-1$ and $d u=d x$. Hence,

$$
\begin{aligned}
\int x(x+1)^{9} d x & =\int(u-1) u^{9} d u=\int\left(u^{10}-u^{9}\right) d u \\
& =\frac{1}{11} u^{11}-\frac{1}{10} u^{10}+C=\frac{1}{11}(x+1)^{11}-\frac{1}{10}(x+1)^{10}+C
\end{aligned}
$$

(b) $\int \sin (2 x-4) d x$

SOLUTION: Let $u=2 x-4$. Then $d u=2 d x \Longrightarrow \frac{1}{2} d u=d x$. So

$$
\int \sin (2 x-4) d x=\frac{1}{2} \int \sin u d u=-\frac{1}{2} \cos u+C=-\frac{1}{2} \cos (2 x-4)+C
$$

(c) $\int \frac{x^{3}}{\left(x^{4}+1\right)^{4}} d x$

SOLUTION: Let $u=x^{4}+1$. Then $d u=4 x^{3} d x$ or $\frac{1}{4} d u=x^{3} d x$. Hence

$$
\int \frac{x^{3}}{\left(x^{4}+1\right)^{4}} d x=\frac{1}{4} \int \frac{1}{u^{4}} d u=-\frac{1}{12} u^{-3}+C=-\frac{1}{12}\left(x^{4}+1\right)^{-3}+C
$$

(d) $\int \sqrt{4 x-1} d x$

SOLUTION: Let $u=4 x-1$. Then $d u=4 d x$ or $\frac{1}{4} d u=d x$. Hence,

$$
\int \sqrt{4 x-1} \mathrm{~d} x=\frac{1}{4} \int \mathrm{u}^{1 / 2} \mathrm{du}=\frac{1}{4} \cdot \frac{2}{3} \mathrm{u}^{3 / 2}+\mathrm{C}=\frac{1}{6}(4 x-1)^{3 / 2}+\mathrm{C}
$$

(e) $\int x \cos \left(x^{2}\right) d x$

Solution: Let $u=x^{2}$. Then $d u=2 x d x$ or $\frac{1}{2} d u=x d x$. Hence,

$$
\int x \cos \left(x^{2}\right) d x=\frac{1}{2} \int \cos u d u=\frac{1}{2} \sin u+C=\frac{1}{2} \sin \left(x^{2}\right)+C .
$$

(f) $\int \sin ^{5} x \cos x d x$

Solution: Let $u=\sin x$. Then $d u=\cos x d x$. Hence,

$$
\int \sin ^{5} x \cos x d x=\int u^{5} d u=\frac{1}{6} u^{6}+C=\frac{1}{6} \sin ^{6} x+C .
$$

(g) $\int \sec ^{2} x \tan ^{4} x d x$

SOLUTION: Let $u=\tan x$. Then $d u=\sec ^{2} x d x$. Hence,

$$
\int \sec ^{2} x \tan ^{4} x d x=\int u^{4} d u=\frac{1}{5} u^{5}+C=\frac{1}{5} \tan ^{5} x+C .
$$

(h) $\int \frac{d x}{(2+\sqrt{x})^{3}}$

SOLUTION: Let $u=2+\sqrt{x}$. Then $d u=\frac{1}{2 \sqrt{x}} d x$, so that

$$
2 \sqrt{x} d u=d x \Longrightarrow 2(u-2) d u=d x
$$

Using this, we get

$$
\begin{aligned}
\int \frac{d x}{(2+\sqrt{x})^{3}} & =\int 2 \frac{u-2}{u^{3}} d u \\
& =2 \int\left(u^{-2}-2 u^{-3}\right) d u \\
& =2\left(-u^{-1}+u^{-2}\right)+C \\
& =2\left(-\frac{1}{2+\sqrt{x}}+\frac{1}{(2+\sqrt{x})^{2}}\right)+C \\
& =2\left(\frac{-2-\sqrt{x}+1}{(2+\sqrt{x})^{2}}\right)+C \\
& =-2 \frac{1+\sqrt{x}}{(2+\sqrt{x})^{2}}+C
\end{aligned}
$$

(9) Evaluate the definite integral.
(a) $\int_{0}^{1} \frac{x}{\left(x^{2}+1\right)^{3}} d x$

Solution: Let $u=x^{2}+1$. Then $d u=2 x d x$ or $\frac{1}{2} d u=x d x$. Hence,

$$
\int_{0}^{1} \frac{x}{\left(x^{2}+1\right)^{3}} d x=\frac{1}{2} \int_{1}^{2} \frac{1}{u^{3}} d u=\frac{1}{2} \cdot-\left.\frac{1}{2} u^{-2}\right|_{1} ^{2}=-\frac{1}{16}+\frac{1}{4}=\frac{3}{16}
$$

(b) $\int_{10}^{17}(x-9)^{-2 / 3} d x$

Solution: Let $u=x-9$. Then $d u=d x$. Hence,

$$
\int_{10}^{17}(x-9)^{-2 / 3} d x=\int_{1}^{8} u^{-2 / 3} d x=\left.3 u^{1 / 3}\right|_{1} ^{8}=3(2-1)=3
$$

(c) $\int_{-8}^{8} \frac{x^{15}}{3+\cos ^{2} x} d x$

SOLUTION: This function is odd! Set $f(x)=\frac{x^{15}}{3+\cos ^{2} x}$, and then $f(-x)=-f(x)$. The bounds of the integral are symmetric, and the function is odd, so the answer is zero.
(d) $\int_{0}^{\pi / 2} \sec ^{2}(\cos \theta) \sin \theta d \theta$

SOLUTION: Let $u=\cos \theta$; then $d u=-\sin \theta d \theta$, and the new bounds of integration are $\cos 0=1$ to $\cos \pi / 2=0$. Thus,

$$
\int_{0}^{\pi / 2} \sec ^{2}(\cos \theta) \sin \theta d \theta=-\int_{1}^{0} \sec ^{2} u d u=\left.\tan u\right|_{0} ^{1}=\tan 1
$$

(e) $\int_{-4}^{-2} \frac{12 x d x}{\left(x^{2}+2\right)^{3}}$

SOLUTION: Let $u=x^{2}+2$; then $d u=2 x d x$ and the new bounds of integration are $u=18$ to $u=6$. Thus,

$$
\int_{-4}^{-2} \frac{12 x d x}{\left(x^{2}+2\right)^{3}}=\int_{18}^{6} \frac{6}{u^{3}} d u=-\left.3 u^{2}\right|_{18} ^{6}=-\frac{2}{27}
$$

(f) $\int_{1}^{8} t^{2} \sqrt{t+8} d t$

SOLUTION: Let $\mathfrak{u}=\mathrm{t}+8$; then $\mathrm{t}^{2}=(\mathrm{u}-8)^{2}$ and $\mathrm{d} \mathfrak{u}=\mathrm{dt}$. The new bounds of integration are $u=9$ to $u=16$. Thus,

$$
\begin{aligned}
\int_{1}^{8} t^{2} \sqrt{t+8} d t & =\int_{9}^{16}(u-8)^{2} \sqrt{u} d u=\int_{9}^{16}\left(u^{5 / 2}-16 u^{3 / 2}+64 u^{1 / 2}\right) d u \\
& =\left.\left(\frac{2}{7} u^{7 / 2}-\frac{32}{5} u^{5 / 2}+\frac{128}{3} u^{3 / 2}\right)\right|_{9} ^{16}=\frac{66868}{105}
\end{aligned}
$$

(g) $\int_{0}^{\pi / 3} \frac{\sin \theta}{\cos ^{2 / 3} \theta} d \theta$

Solution: Let $u=\cos \theta$. Then $d u=-\sin \theta d \theta$ and when $\theta=0, u=1$ and when $\theta=\pi / 3$, $u=\frac{1}{7} 2$. So

$$
\int_{0}^{\pi / 3} \frac{\sin \theta}{\cos ^{2 / 3} \theta} d \theta=-\int_{1}^{1 / 2} u^{-2 / 3} d u=-\left.3 u^{1 / 3}\right|_{1} ^{1 / 2}=-3\left(2^{-1 / 3}-1\right)=3-\frac{3 \sqrt[3]{4}}{2}
$$

(h) $\int_{-2}^{4}|(x-1)(x-3)| d x$

Solution:

$$
\begin{aligned}
\int_{-2}^{4}|(x-1)(x-3)| d x & =\int_{-2}^{1}\left(x^{2}-4 x+3\right) d x+\int_{1}^{3}\left(-x^{2}+4 x-3\right) d x+\int_{3}^{4}\left(x^{2}-4 x+3\right) d x \\
& =\left.\left(\frac{1}{3} x^{3}-2 x 62+3 x\right)\right|_{-2} ^{1}+\left.\left(-\frac{1}{3} x^{3}+2 x^{2}-3 x\right)\right|_{1} ^{3}+\left.\left(\frac{1}{3} x^{3}-2 x^{2}+3 x\right)\right|_{3} ^{4} \\
& =\frac{4}{3}-\left(-\frac{50}{3}\right)+0-\left(-\frac{4}{3}\right)+\frac{4}{3}-0 \\
& =\frac{62}{3}
\end{aligned}
$$

