Chapter 5 Review

\qquad
29 July 2018
(1) If f is increasing and concave up on an interval $[a, b]$, is the left-endpoint approximation more accurate or is the right-endpoint approximation more accurate? Why? What if f is increasing and concave down?
(2) Evaluate the limit by interpreting as an integral, where a is an arbitrary constant.

$$
\lim _{N \rightarrow \infty} \frac{\left(\frac{N+1}{N}\right)^{a}+\left(\frac{N+2}{N}\right)^{a}+\ldots+\left(\frac{N+N}{N}\right)^{a}}{N}
$$

(3) Calculate the derivative.
(a) $\frac{d}{d x} \int_{3}^{x} \sin \left(t^{3}\right) d t$
(b) $\frac{d}{d x} \int_{4 x^{2}}^{9} \frac{1}{t} d t$
(4) Express the antiderivative $F(x)$ of $f(x)$ as an integral, given that $f(x)=\sqrt{x^{4}+1}$ and $F(3)=0$.
(5) Show that a particle, located at the origin at time $t=1$ and moving along the x-axis with velocity $v(\mathrm{t})=\mathrm{t}^{-2}$, will never pass the point $\mathrm{x}=2$.
(6) Show that a particle, located at the origin at time $t=1$ and moving along the x-axis with velocity $v(\mathrm{t})=\mathrm{t}^{-1 / 2}$, moves arbitrarily far from the origin after sufficient time has elapsed.
(7) Evaluate the indefinite integral

$$
\int \tan x \sec ^{2} x d x
$$

in two ways: first using $u=\tan x$ and then using $u=\sec x$. What's going on here?
(8) Evaluate the indefinite integral.
(a) $\int x(x+1)^{9} d x$
(b) $\int \sin (2 x-4) d x$
(c) $\int \frac{x^{3}}{\left(x^{4}+1\right)^{4}} d x$
(d) $\int \sqrt{4 x-1} d x$
(e) $\int x \cos \left(x^{2}\right) d x$
(f) $\int \sin ^{5} x \cos x d x$
(g) $\int \sec ^{2} x \tan ^{4} x d x$
(h) $\int \frac{d x}{(2+\sqrt{x})^{3}}$
(9) Evaluate the definite integral.
(a) $\int_{0}^{1} \frac{x}{\left(x^{2}+1\right)^{3}} d x$
(b) $\int_{10}^{17}(x-9)^{-2 / 3} d x$
(c) $\int_{-8}^{8} \frac{x^{15}}{3+\cos ^{2} x} d x$
(d) $\int_{0}^{\pi / 2} \sec ^{2}(\cos \theta) \sin \theta d \theta$
(e) $\int_{-4}^{-2} \frac{12 x d x}{\left(x^{2}+2\right)^{3}}$
(f) $\int_{1}^{8} t^{2} \sqrt{t+8} d t$
(g) $\int_{0}^{\pi / 3} \frac{\sin \theta}{\cos ^{2 / 3} \theta} d \theta$
(h) $\int_{-2}^{4}|(x-1)(x-3)| d x$

