(1) Sketch the region enclosed by the curves and set up an integral to compute it's area, but do not evaluate.
(a) $y=4-x^{2}, y=x^{2}-4$

SOLUTION: Setting $4-x^{2}=x^{2}-4$ yields $2 x^{2}=8$ or $x^{2}=4$. Thus, the curves $y=4-x^{2}$ and $y=x^{2}-4$ intersect at $x= \pm 2$. From the figure below, we see that $y=4-x^{2}$ lies above $y=x^{2}-4$ over the interval $[-2,2]$; hence, the area of the region enclosed by the curves is

$$
\int_{-2}^{2}\left(\left(4-x^{2}\right)-\left(x^{2}-4\right)\right) d x=\int_{-2}^{2}\left(8-2 x^{2}\right) d x=\left.\left(8 x-\frac{2}{3} x^{3}\right)\right|_{-2} ^{2}=\frac{64}{3} .
$$


(b) $y=x^{2}-6, y=6-x^{3}, x=0$

SOLUTION: Setting $x^{2}-6=6-x^{3}$ yields

$$
0=x^{3}+x^{2}-12=(x-2)\left(x^{2}+3 x+6\right)
$$

so the curves $y=x^{2}-6$ and $y=6-x^{3}$ intersect at $x=2$. Using the graph shown below, we see that $y=6-x^{3}$ lies above $y=x^{2}-6$ over the interval $[0,2]$; hence, the area of the region enclosed by these curves and the $y$-axis is

$$
\int_{0}^{2}\left(\left(6-x^{3}\right)-\left(x^{2}-6\right)\right) d x=\int_{0}^{2}\left(-x^{3}-x^{2}+12\right) d x=\left.\left(-\frac{1}{4} x^{4}-\frac{1}{3} x^{3}+12 x\right)\right|_{0} ^{2}=\frac{52}{3}
$$


(c) $y=x \sqrt{x-2}, y=-x \sqrt{x-2}, x=4$

SOLUTION: Note that $y=x \sqrt{x-2}$ and $y=-x \sqrt{x-2}$ are the upper and lower branches, respectively, of the curve $y^{2}=x^{2}(x-2)$. The area enclosed by this curve and the vertical line $x=4$ is

$$
\int_{2}^{4}(x \sqrt{x-2}-(-x \sqrt{x-2})) d x=\int_{2}^{4} 2 x \sqrt{x-2} d x
$$

Substitute $u=x-2$. Then $d u=d x, x=u+2$ and

$$
\int_{2}^{4} 2 x \sqrt{x-2} d x=\int_{0}^{2} 2(u+2) \sqrt{u} d u=\int_{0}^{2}\left(2 u^{3 / 2}+4 u^{1 / 2}\right) d u=\left.\left(\frac{4}{5} u^{5 / 2}+\frac{8}{3} u^{3 / 2}\right)\right|_{0} ^{2}=\frac{128 \sqrt{2}}{15}
$$


(d) $x=2 y, x+1=(y-1)^{2}$

SOLUTION: Setting $2 y=(y-1)^{2}-1$ yields $0=y^{2}-4 y=y(y-4)$, so the two curves intersect at $y=0$ and $y=4$. From the graph below, we see that $x=2 y$ lies to the right of $x+1=(y-1)^{2}$ over the interval $[0,4]$ along the $y$-axis. Thus, the area of the region enclosed by the two curves is

$$
\int_{0}^{4}\left(2 y-\left((y-1)^{2}-1\right)\right) d y=\int_{0}^{4}\left(4 y-y^{2}\right) d y=\left.\left(2 y^{2}-\frac{1}{3} y^{3}\right)\right|_{0} ^{4}=\frac{32}{3}
$$



## §6.2 (SEtting UP INTEGRALS)

$\qquad$
2 July 2018
(1) Calculate the volume of a cylinder inclined at an angle $\theta=\frac{\pi}{6}$ with height 10 and base of radius 4 .


Solution: By Cavalieri's Principle, the volume of this thing is the same as the volume of a regular cylinder of height 10 . So the volume is $\pi R^{2} h=\pi(4)^{2}(10)=160 \pi$.
Alternatively, the cross-sectional area is at each $y$-value $\pi(4)^{2}=16 \pi$, so the volume is

$$
\int_{0}^{10} 16 \pi d y=160 \pi .
$$

(2) Calculate the volume of the ramp in the figure below in three ways by integrating the area of the cross sections:
(a) perpendicular to the $x$-axis.

SOLUTION: Cross sections perpindicular to the $x$-axis are rectangles of width 4 and height $2-\frac{1}{3} x$. The volume of the ramp is then

$$
\int_{0}^{6} 4\left(-\frac{1}{3} x+2\right) d x=\left.\left(-\frac{2}{3} x^{2}+8 x\right)\right|_{0} ^{6}=24
$$

(b) perpendicular to the $y$-axis.

SOlution: Cross sections perpendicular to the $y$-axis are right triangles with legs of length 2 and 6. The volume of the ramp is then

$$
\int_{0}^{4}\left(\frac{1}{2} \cdot 2 \cdot 6\right) d y=\left.(6 y)\right|_{0} ^{4}=24 .
$$

(c) perpendicular to the $z$-axis.

Solution: Cross sections perpendicular to the $z$-axis are rectangles of length $6-3 z$ and width 4 . The volume of the ramp is then

$$
\int_{0}^{2} 4(-3(z-2)) \mathrm{d} z=\left.\left(-6 z^{2}+24 z\right)\right|_{0} ^{2}=24 .
$$


(3) Compute the volume of a cone of height 12 whose base is an ellipse with semimajor axis $a=6$ and semiminor axis $\mathrm{b}=4$.


SOLUTION: At each height $y$, the elliptical cross section has major axis $\frac{1}{2}(12-y)$ and minor axis $\frac{1}{3}(12-y)$. The cross-sectional area is then $\frac{\pi}{6}(12-y)^{2}$, and the volume is

$$
\int_{0}^{12} \frac{\pi}{6}(12-y)^{2} d y=-\left.\frac{\pi}{18}(12-y)^{3}\right|_{0} ^{12}=96 \pi
$$

