(1) Find the volume of a regular tetrahedron whose faces are equilateral triangles of side length s.

SOLUTION: Using similar triangles, the total height of the tetrahedron is $h=\sqrt{2 / 3} \cdot \mathrm{~s}$. Also using similar triangles, the side length of the equilateral triangle at height z above the base is

$$
s\left(\frac{h-z}{h}\right)=s-\frac{z}{\sqrt{2 / 3}}
$$

The volume of the tetrahedron is then given by

$$
\int_{0}^{s \sqrt{2 / 3}} \frac{\sqrt{3}}{4}\left(s-\frac{z}{\sqrt{2 / 3}}\right)^{2} d z=-\left.\frac{\sqrt{2}}{12}\left(s-\frac{z}{\sqrt{2 / 3}}\right)^{3}\right|_{0} ^{s \sqrt{2 / 3}}=\frac{s^{3} \sqrt{2}}{12}
$$

(2) A frustum of a pyramid is a pyramid with its top cut off. Let V be the volume of a frustum of height h whose base is a square of side length a and whose top is a square of side length b with $a>b \geq 0$.

(a) Show that if the frustum were continued to a full pyramid, it would have height $\frac{h a}{a-b}$.

Solution: Let H be the height of the full pyramid. Using similar triangles, we have the proportion

$$
\frac{\mathrm{H}}{\mathrm{a}}=\frac{\mathrm{H}-\mathrm{h}}{\mathrm{~b}}
$$

which gives

$$
\mathrm{H}=\frac{h a}{\mathrm{a}-\mathrm{b}}
$$

(b) Calculate the side length of a cross-section of the frustum at height x from the base.

SOLUTION: The cross-section at height x is a square of side length $(1 / h)(a(h-x)+b x)$.
Let w denote the side length of the square cross-section at height x. By similar triangles, we have

$$
\frac{\mathrm{a}}{\mathrm{H}}=\frac{w}{\mathrm{H}-\mathrm{x}} .
$$

Substituting the value for H from part (a) gives

$$
w=\frac{a(h-x)+b x}{h}
$$

(c) Calculate the volume of the frustum.

SOLUTION: $V=\frac{1}{3} h\left(a^{2}+a b+b^{2}\right)$.
This volume is obtained by the integral:

$$
\begin{aligned}
\int_{0}^{h}\left(\frac{1}{h}(a(h-x)+b x)\right)^{2} d x & =\frac{1}{h^{2}} \int_{0}^{h}\left(a^{2}(h-x)^{2}+2 a b(h-x) x+b^{2} x^{2}\right) d x \\
& =\left.\frac{1}{h^{2}}\left(-\frac{a^{2}}{3}(h-x)^{3}+a b h x^{2}-\frac{2}{3} a b x^{3}+\frac{1}{3} b^{2} x^{3}\right)\right|_{0} ^{h} \\
& =\frac{h}{3}\left(a^{2}+a b+b^{2}\right)
\end{aligned}
$$

(3) A plane inclined at an angle of 45° passes through a diameter of the base of a cylinder of radius r. Find the volume of the region within the cylinder and below the plane.

Solution: Place the center of the base at the origin. Then, for each x, the vertical cross section taken perpendicular to the x-axis is a rectangle of base $2 \sqrt{r^{2}-x^{2}}$ and height x. The volume of the solid enclosed by the plane and the cylinder is therefore

$$
\int_{0}^{r} 2 x \sqrt{r^{2}-x^{2}} d x=\int_{0}^{r^{2}} \sqrt{u} d u=\left.\left(\frac{2}{3} u^{3 / 2}\right)\right|_{0} ^{r^{2}}=\frac{2}{3} r^{3}
$$

(4) The solid S below is the intersection of two cylinders of radius r whose axes are perpendicular.

(a) The horizontal cross-section of each cylinder at a distance y from the central axis is a rectangular strip. Find the area of the horizontal cross-section of S at distance y from the central axis.
SOLUTION: The horizontal cross section at distance y from the central axis (for $-r \leq y \leq r$) is a square of width $w=2 \sqrt{r^{2}-y^{2}}$. The area of the horizontal cross section of S at distance y from the central axis is $w^{2}=4\left(r^{2}-y^{2}\right)$.
(b) Find the volume of S as a function of r.

Solution: The volume of the solid S is then

$$
4 \int_{r}^{-r}\left(r^{2}-y^{2}\right) d y=\left.4\left(r^{2} y-\frac{1}{3} y^{3}\right)\right|_{-r} ^{r}=\frac{16}{3} r^{3}
$$

