\qquad
3 July 2018
(1) Find the volume of a regular tetrahedron whose faces are equilateral triangles of side length s.

(2) A frustum of a pyramid is a pyramid with its top cut off. Let V be the volume of a frustum of height h whose base is a square of side length a and whose top is a square of side length b with $a>b \geq 0$.

(a) Show that if the frustum were continued to a full pyramid, it would have height $\frac{h a}{a-b}$.
(b) Calculate the side length of a cross-section of the frustum at height x from the base.
(c) Calculate the volume of the frustum.
(3) A plane inclined at an angle of 45° passes through a diameter of the base of a cylinder of radius r. Find the volume of the region within the cylinder and below the plane.

(4) The solid S below is the intersection of two cylinders of radius r whose axes are perpendicular.

(a) The horizontal cross-section of each cylinder at a distance y from the central axis is a rectangular strip. Find the area of the horizontal cross-section of S at distance y from the central axis.
(b) Find the volume of S as a function of r.

