(1) Calculate the work (in Joules) required to pump all of the water out of a full tank with the shape described. Distances are in meters, and the density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
(a) A rectangular tank, with water exiting from a small hole in the top.

SOLUTION: Place the origin at the top of the box, and let the positive y-axis point downward. The volume of one layer of water is $32 \Delta y$ cubic meters, so the force needed to lift it is

$$
(9.8)(1000)(32) \Delta y=313600 \Delta y \text { Newtons. }
$$

Each layer must be lifted y meters, so the total work needed to empty the tank is

$$
\int_{0}^{5} 313600 y d y=\left.156800 y^{3}\right|_{0} ^{5}=3.92 \times 10^{6} \text { Joules. }
$$

(b) A horizontal cylinder of length ℓ, where water exits from a small hole in the top.

SOLUTION: Place the origin along the central axis of the cylinder. At location y, the layer of water is a rectangular lab of length ℓ, width $2 \sqrt{r^{2}-y^{2}}$, and thickness Δy. Thus, the volume of the layer is $2 \ell \sqrt{r^{2}-y^{2}} \Delta y$, and the force needed to lift the layer is

$$
19600 \ell \sqrt{r^{2}-y^{2}} \Delta y
$$

The layer must be lifted a distance $r-y$, so the total work needed to empty the tank is given by

$$
\int_{-r}^{r} 19600 \ell \sqrt{r^{2}-y^{2}}(r-y) d y=19600 \ell r \int_{-r}^{r} \sqrt{r^{2}-y^{2}} d y-19600 \int_{-r}^{r} y \sqrt{r^{2}-y^{2}} d y
$$

Now the second term is zero because the integrand is an odd function and the interval of integration is symmetric with respect to zero. Moreover, the otehr integral is one-half the area of a circle of radius r, therefore,

$$
\int_{-r}^{r} \sqrt{r^{2}-y^{2}} d y=\frac{1}{2} \pi r^{3} .
$$

So the total work needed to empty the tank is

$$
\text { 19600lr }\left(\frac{1}{2} \pi^{2}\right)=9800 \ell \pi r^{3} \text { Joules. }
$$

(c) A trough as in the picture, where the water exits by pouring over the sides.

SOLUTION: Place the origin along the bottom edge of the trough, and let the positive y-axis point upward. From similar triangles, the width of a layer of water at height y meters is

$$
w=a+\frac{y(b-a)}{h} \text { meters }
$$

so the volume of each layer is

$$
w c \Delta y=c\left(a+\frac{y(b-a)}{h}\right) \Delta y \text { meters }^{3}
$$

Thus, the force needed to lift a layer is

$$
\text { 9800c }\left(a+\frac{y(b-a)}{h}\right) \Delta y \text { Newtons. }
$$

Each layer must be lifted $h-y$ meters, so the total work needed to empty the tank is

$$
\int_{0}^{h} 9800(h-y) c\left(a+\frac{y(b-a)}{h}\right) d y=9800 c\left(\frac{a h^{3}}{3}+\frac{b h^{2}}{6}\right) \text { Joules. }
$$

(2) Calculate the work required to lift a 6 meter chain with mass 18 kg over the side of a building. SOLUTION: First, note that the chain has a mass density of $18 / 6=3 \mathrm{~kg} / \mathrm{m}$. Now, consider a segment of the chain of length Δy located at distance y_{j} feet from the top of the building. The work needed to lift this segment of the chain to the top of the building is approximately

$$
W_{j} \approx(3 \Delta y) 9.8 y_{j} \text { Newtons. }
$$

Summing over all segments of the chain and passing to the limit as $\Delta y \rightarrow 0$, it follows that the total work is

$$
\int_{0}^{6} 29.4 y \mathrm{~d} y=\left.14.7 \mathrm{y}^{2}\right|_{0} ^{6}=529.2 \text { Joules. }
$$

(3) A 3 meter chain with mass density $\rho(x)=2 x(4-x) \mathrm{kg} / \mathrm{m}$ lies on the ground. Calculate the work required to lift the chain from the front end so that its bottom is 2 meters above the ground.
SOLUTION: Consider a segment of the chain of length Δx that must be lifted x_{j} meters. The work needed to lift this segment is approximately

$$
W_{j} \approx\left(\rho\left(x_{j}\right) \Delta x\right) 9.8 x_{j} \text { Joules. }
$$

Summing over all segments of the chain and passing to the limit as $\Delta x \rightarrow 0$, it follows that the total work needed to fully extend the chain is

$$
\int_{0}^{3} 9.8 \rho(x) x d x=9.8 \int_{0}^{3}\left(8 x^{2}-2 x^{3}\right) d x=\left.9.8\left(\frac{8}{3} x^{3}-\frac{1}{2} x^{4}\right)\right|_{0} ^{3}=308.7 \text { Joules. }
$$

But we also need to lift the chain two meters off the ground after it's fully extended! This requires us to do work equal to 2 meters multiplied by the weight of the chain, which is

$$
\int_{0}^{3} 9.8 \rho(x) d x=9.8 \int_{0}^{3}\left(8 x-2 x^{2}\right) d x=\left.9.8\left(4 x^{2}-\frac{2}{3} x^{3}\right)\right|_{0} ^{3}=176.4 \text { Newtons. }
$$

So lifting it another two meters after it's fully extended requires an additional 352.8 Joules of work. The total work is therefore 661.5 Joules.

