§6.5 (Work and Energy)

NAME: \qquad
10 July 2018
(1) Calculate the work required to lift a 3-meter chain over the side of a building if the chain has variable density $\lambda(x)=x^{2}-3 x+10 \mathrm{~kg} / \mathrm{m}$ for $0 \leq x \leq 3$. Assume that the chain is hanging off the edge of the building, with the bottom of the chain at $x=0$ and the top at $x=3$.
(2) A 3 meter chain with mass density $\rho(x)=2 x(4-x) \mathrm{kg} / \mathrm{m}$ lies on the ground. Calculate the work required to lift the chain from the front end so that its bottom is 2 meters above the ground.
(3) Calculate the work (in Joules) required to pump all of the water out of a trough as in the picture, where the water exits by pouring over the sides. Distances are in meters, and the density of water is 1000 $\mathrm{kg} / \mathrm{m}^{3}$.

§8.1 (Integration by Parts)
NAME:
28 July 2018
(1) Evaluate the integral.
(a) $\int x e^{-x} d x$
(b) $\int x^{3} e^{x^{2}} d x$.
(c) $\int_{1}^{3} \ln x d x$.
(d) $\int x e^{2 x} d x$
(e) $\int x^{3} \ln x d x$
(f) $\int x \cos 2 x d x$
(g) $\int \frac{\ln x}{x^{2}} d x$
(h) $\int \frac{\ln (\ln x)}{x} d x$
(i) $\int_{0}^{1} \frac{x^{3}}{\sqrt{9+x^{2}}} d x$
(j) $\int x^{4} e^{7 x} d x$
(k) $\int \frac{(\ln x)^{2}}{x^{2}} d x$
(2) Find the volume of the solid obtained by revolving $y=\cos x$ for $0 \leq x \leq \pi / 2$ around the y-axis.
(3) (a) Derive the reduction formula: $\int x^{n} e^{x} d x=x^{n} e^{x}-n \int x^{n-1} e^{x} d x$
(b) Define functions $P_{n}(x)$ by the formula $\int x^{n} e^{x} d x=P_{n}(x) e^{x}$. Use the reduction formula from the previous part to prove that $\mathrm{P}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}^{\mathrm{n}}-\mathrm{n} \mathrm{P}_{\mathrm{n}-1}(\mathrm{x})$.
(c) Use the recursion formula from the previous part to find $P_{n}(x)$ for $n=0,1,2,3,4$.

