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� Maru Sarazola 203 TR 8:00–8:50am � David Mehrle 209 TR 9:05–9:55am
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1. Compute the following indefinite integrals:

a.)
∫
x cos x+

√
x+ 1

x
dx

We divide each term by x and then integrate them separately.∫
x cos x+

√
x+ 1

x
dx =

∫ (
cos x+ x−1/2 +

1

x

)
dx

= sin x+ 2x1/2 + ln(x) + C.

b.)
∫

t+ 2√
t2 + 4t

dt

We make a substitution u = t2+4t. Observe that du = (2t+4)dt = 2(t+2)dt. Therefore,∫
t+ 2√
t2 + 4t

dx =

∫
1√

t2 + 4t
(t+ 2)dt =

∫
u−1/2 · 1

2
du =

1

2

∫
u−1/2du.

So our integral is u1/2 + C = (t2 + 4t)1/2 + C.

c.)
∫

ex

1+ ex
dx

We make a substitution u = 1+ ex. We have du = exdx, so∫
ex

1+ ex
dx =

∫
1

u
du = ln(u) + C = ln(1+ ex) + C.



Math 1910 (Fall 2016) Prelim I (10/04/2016) 2

2. Compute the following definite integrals:

a.)
∫π
0

| cos x|dx

For a number x in the interval [0, π], we have | cos x| = cos x if 0 ≤ x ≤ π/2 and | cos(x)| =
− cos(x) if π/2 ≤ x ≤ π. Therefore,∫π

0

| cos x|dx =
∫π/2
0

cos xdx+
∫π
π/2

− cos xdx.

So our integral is equal to

sin x
∣∣∣π/2
0

−(− sin x)
∣∣∣π
π/2

= (sin(π/2)−sin(0))+(− sin(π)+sin(π/2)) = (1−0)+(0+1) = 2.

b.)
∫ 1
0

d

dx

(x+ x2
x4 + 1

)
dx

The function
x+ x2

x4 + 1
is obviously an antiderivative of

d

dx

(x+ x2
x4 + 1

)
. So we have

∫ 1
0

d

dx

(x+ x2
x4 + 1

)
dx =

x+ x2

x4 + 1

∣∣∣1
0
=
1+ 12

14 + 1
−
0+ 02

04 + 1
= 2/2− 0 = 1.

c.)
∫π/4
−π/4

sin x
cos2 x

dx

Let us first compute
∫ sin x

cos2 x dx. We make a substitution u = cos x. We have du =
− sin xdx, so∫

sin x
cos2 x

dx =

∫
−1

u2
du = −

∫
u−2 du = u−1 + C = (cos x)−1 + C.

Therefore, ∫π/4
−π/4

sin x
cos2 x

dx =
1

cos x

∣∣∣π/4
−π/4

=
1

cos(π/4)
−

1

cos(−π/4)
.

We have cos(π/4) = cos(−π/4) since cosine is even (or since both values are equal to√
2/2). Therefore,

∫π/4
−π/4

sin x
cos2 x dx = 0.

[One could have also proved this with no computations by noting that sin x/cos2 x is an
odd function!]
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3. Consider the “curved triangle” bounded above by the curves y = x+2 and y = x2, and from
below by the part of the x-axis that varies from x = −2 to 0. Draw the region and compute
its area.

A picture of the “curved triangle” is given below. The curve y = 0 (i.e., the x-axis) intersects
the curves y = x+ 2 and y = x2 at (−2, 0) and (0, 0), respectively.

To find where y = x + 2 and y = x2 cross, we first solve x + 2 = y = x2. So 0 = x2 − x − 2 =
(x− 2)(x+ 1) and hence x is 2 or −1. Therefore, the two curves intersect at (2, 4) and (−1, 1).
Only the point (−1, 1) is relevant to our region.

The area of the region is then

A =

∫−1
−2

(x+ 2)dx+

∫ 0
−1
x2 dx = (x2/2+ 2x)

∣∣∣−1
−2

+ (x3/3)
∣∣∣0
−1

= (1/2− 2) − (2− 4) + 0− (−1/3) = 1/2+ 1/3 = 3/6+ 2/6 = 5/6.

Note that we broke up the area into two pieces (one from −2 to −1 where the line is on top
and from −1 to 0when the parabola is on top).

An alternate way to do the computation with a single integral is to see that as y varies from
0 to 1, the region is the one bounded above by x = −

√
y (note the choice of sign!) and below

by x = y− 2. The area is thus

A =

∫ 1
0

−
√
y− (y− 2)dy = (−2/3 · y3/2 − y2/2+ 2y)

∣∣∣1
0

= (−2/3− 1/2+ 2) − 0 = −4/6− 3/6+ 12/6 = 5/6.
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4. LetR be the region in the plane bounded by the curves:

y =
√
x, y = 0, x = 4.

Let S be the solid generated by rotating the regionR around the x-axis.

a.) Sketch the regionR.

b.) Use the disk (or washer) method to find an integral that gives the volume of S . Note:
you do not need to compute the integral.

Using the disk method, the volume is:∫ 4
0

π(
√
x)2 dx =

∫ 4
0

πxdx = πx2/2
∣∣∣4
0
= π · 42/2 = 8π.
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c.) Use the shell method to find an integral that gives the volume of S. Note: you do not
need to compute the integral.

For a value 0 ≤ y ≤ 2, the corresponding shell has radius y and length 4− y2. Using the
shell method, the volume is:∫ 2

0

2π · y · (4− y2)dy = 8π

∫ 2
0

ydy− 2π

∫ 2
0

y3 dy

= 4πy2
∣∣∣2
0
− πy4/2

∣∣∣2
0

= 4π · 22 − π · 24/2
= 16π− 8π = 8π.

d.) Using one of the integrals from the previous parts, find the volume of S.

Both integrals are computed above; they both give the value 8π.
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5. a.) Compute the derivative of the function

g(x) =

∫x2
x

et
2

dt.

Define the function F(x) =
∫x
0

et
2

dt. The Fundamental Theorem of Calculus says that

F ′(x) = ex
2

.

We have

g(x) =

∫x2
0

et
2

dt+

∫ 0
x

et
2

dt =

∫x2
0

et
2

dt−

∫x
0

et
2

dt = F(x2) − F(x).

Taking derivatives (and using the chain rule), we have

g ′(x) = F ′(x2) · 2x− F ′(x) = e(x2)2 · 2x− ex2 = 2xex
4

− ex
2

,

where in the last equality we have used F ′(x) = ex
2
.

b.) Find the equation for the tangent line of the graph y = g(x) at x = 0.

We have g(0) =
∫0
0 e

t2 dt = 0. Using the expression for g ′(x) in the previous question,
we have

g ′(0) = 2 · 0 · e04 − e02 = −1.

Since g(0) = 0 and g ′(0) = −1, the equation for the tangent line is

y = −x;

it is the line of slope −1 that passes through (0, 0).
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6. a.) Verify that the following indefinite integral is correct:∫
ex sin(x)dx =

1

2
ex sin(x) −

1

2
ex cos(x) + C.

We take the derivative of the proposed antiderivative and show that it equals ex sin(x).

d

dx

(1
2
ex sin(x) −

1

2
ex cos(x)

)
=

(1
2
ex sin(x) +

1

2
ex cos(x)

)
−
(1
2
ex cos(x) −

1

2
ex sin(x)

)
=
1

2
ex sin(x) +

1

2
ex cos(x) −

1

2
ex cos(x) +

1

2
ex sin(x)

= ex sin(x).

b.) For each integer N ≥ 1, define the number

RN =

N∑
i=1

ei/N · 1
N
.

Compute the limit lim
N→∞RN by recognizing RN as a Riemann sum. Explain your answer.

First observe that the numbers 1/N, 2/N, . . . ,N/N = 1 are the right endpoints of the
subintervals obtained by cutting the interval [0, 1] into N subintervals with common
width ∆x = 1/N. We can then recognize RN as theN-th right endpoint approximation to
the integral ∫ 1

0

ex dx.

Therefore,

lim
N→∞RN =

∫ 1
0

ex dx = ex
∣∣∣1
0
= e1 − e0 = e− 1.
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