§8.7 (IMPROPER InTEGRALS)

NAME: SOLUTIONS
18 July 2018

Improper Integrals

The improper integral of f over $[a, \infty)$ is defined as

$$
\int_{a}^{\infty} f(x) d x=\lim _{R \rightarrow \infty} \int_{a}^{R} f(x) d x
$$

We say that the improper integral converges if the limit exists , and diverges if the limit does not exist
If $f(x)$ is continuous on $[a, b)$ with an infinite discontinuity at $x=b$, then the improper integral of f over $[\mathrm{a}, \mathrm{b}]$ is defined as:

$$
\int_{a}^{b} f(x) d x=\lim _{R \rightarrow b^{-}} \int_{a}^{R} f(x) d x
$$

If $f(x)$ is continuous on $[a, b]$ and f has an infinite discontinuity at $f(x)=c$, where $a<c<b$, then the improper integral of f over the interval $[a, c]$ is defined as:

$$
\int_{a}^{b} f(x) d x=\lim _{R \rightarrow c^{-}} \int_{a}^{R} f(x) d x+\lim _{R \rightarrow c^{+}} \int_{R}^{b} f(x) d x
$$

QUESTIONS

(1) Consider the integral $\int_{-\infty}^{\infty} x d x$.
(a) Compute $\lim _{a \rightarrow \infty} \int_{-a}^{a} x d x$.

SOLUTION:

$$
\lim _{a \rightarrow \infty} \int_{-a}^{a} x d x=\left.\lim _{a \rightarrow \infty} \frac{x^{2}}{2}\right|_{-a} ^{a}=\lim _{a \rightarrow \infty}\left(\frac{a^{2}}{2}-\frac{(-a)^{2}}{2}\right)=0
$$

(b) Is it fair to say that $\int_{-\infty}^{\infty} x d x$ converges? If not, then how should we define the improper integral $\int_{-\infty}^{\infty} x d x ?$
SOLUTION: The definition of the doubly infinite improper integral is

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x
$$

(2) Which of the following integrals is improper? Explain your answer but don't evaluate the integral.
(a) $\int_{0}^{2} \frac{d x}{x^{1 / 3}}$

SOLUTION: Improper. The function $x^{-1 / 3}$ is not defined at 0 .
(b) $\int_{1}^{\infty} \frac{d x}{x^{0.2}}$

SOLUTION: Improper. Infinite interval of integration.
(c) $\int_{-1}^{\infty} e^{-x} d x$

SOLUTION: Improper. Infinite interval of integration.
(d) $\int_{0}^{1} e^{-x} d x$

Solution: Proper. The function e^{-x} is continuous on the bounded interval $[0,1]$.
(e) $\int_{0}^{\pi} \sec x d x$

Solution: Improper. The function $\sec x$ is not defined at $\pi / 2$.
(f) $\int_{0}^{\infty} \sin x \mathrm{~d} x$

SOLUTION: Improper. Infinite interval of integration.
(g) $\int_{0}^{1} \sin x d x$

Solution: Proper. The function sin xis continuous on the bounded interval $[0,1]$.
(h) $\int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{3-x^{2}}}$

Solution: Proper. The function $1 / \sqrt{3-x^{2}}$ is continuous on the bounded interval $[0,1]$.
(i) $\int_{1}^{\infty} \ln x d x$

SOLUTION: Improper. Infinite interval of integration.
(j) $\int_{0}^{3} \ln x d x$

SOLUTION: Improper. The function $\ln x$ is not defined at 0 .
(3) Determine whether the improper integral converges, and if it does, evaluate it.
(a) $\int_{1}^{\infty} \frac{1}{x^{20 / 19}} d x$

SOLUTION:

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x^{20 / 19}} d x & =\lim _{a \rightarrow \infty} \int_{1}^{a} \frac{1}{x^{20 / 19}} d x \\
& =\left.\lim _{a \rightarrow \infty}\left(-19 x^{-1 / 19}\right)\right|_{1} ^{a} \\
& =\lim _{a \rightarrow \infty}\left(-19-\frac{19}{a^{1 / 19}}\right) \\
& =19-0=19
\end{aligned}
$$

(b) $\int_{20}^{\infty} \frac{1}{t} d t$

SOLUTION: The integral doesn't converge, because it's a p-integral with $p=1$.
(c) $\int_{0}^{5} \frac{1}{x^{19 / 20}} d x$

SOLUTION: The function $x^{-19 / 20}$ is infinite at the endpoint zero, so it is improper.

$$
\begin{aligned}
\int_{0}^{5} \frac{1}{x^{19 / 20}} d x & =\lim _{a \rightarrow 0} \int_{a}^{5} \frac{1}{x^{19 / 20}} \\
& =\left.\lim _{a \rightarrow 0}\left(20 x^{1 / 20}\right)\right|_{a} ^{5} \\
& =\lim _{a \rightarrow 0}\left(205^{1 / 20}-20 a^{1 / 20}\right) \\
& =20\left(5^{1 / 20}-0\right)=20 \cdot 5^{1 / 20}
\end{aligned}
$$

(d) $\int_{1}^{3} \frac{1}{\sqrt{3-x}} d x$

SOLUTION: The function $f(x)=\frac{1}{\sqrt{3-x}}$ is infinite at $x=3$, so it is improper.

$$
\begin{aligned}
\int_{1}^{3} \frac{1}{\sqrt{3-x}} d x & =\lim _{a \rightarrow 3} \int_{1}^{a} \frac{1}{\sqrt{3-x}} d x \\
& =\left.\lim _{a \rightarrow 3}(2 \sqrt{3-x})\right|_{1} ^{a} \\
& =\lim _{a \rightarrow 3} 2 \sqrt{3-a}-2 \sqrt{2} \\
& =2 \sqrt{0}-2 \sqrt{2}=2 \sqrt{2}
\end{aligned}
$$

(e) $\int_{-2}^{4} \frac{1}{(x+2)^{1 / 3}} d x$

SOLUTION: The function $f(x)=(x+2)^{-1 / 3}$ is infinite at $x=-2$, so it is improper.

$$
\begin{aligned}
\int_{-2}^{4} \frac{1}{(x+2)^{1 / 3}} d x & =\lim _{a \rightarrow-2} \int_{a}^{4} \frac{1}{(x+2)^{1 / 3}} d x \\
& =\left.\lim _{a \rightarrow 2} \frac{3}{2}(x+2)^{2 / 3}\right|_{a} ^{4} \\
& =\lim _{a \rightarrow 2} \frac{3}{2}\left(6^{3 / 2}-(a+2)^{3 / 2}\right) \\
& =\frac{3}{2}\left(6^{2 / 3}-0\right)=\frac{3}{2} 6^{2 / 3}
\end{aligned}
$$

The Comparison Test

The Comparison Test: Assume that $f(x) \geq g(x) \geq 0$ for $x \geq a$. Then,

- If $\int_{a}^{\infty} \square f(x){ }^{(6)} d x$ converges, then $\int_{a}^{\infty} g^{(x)} d x$ also converges.
- If $\int_{a}^{\infty} g^{(8)} d x$ diverges, then $\int_{a}^{\infty} f^{(x)} d x$ also diverges.

Most frequently, we compare integrals to the p-integrals:

- For $p>1: \int_{a}^{\infty} \frac{1}{x^{p}} d x \quad$ converges ${ }^{(10)}$ and $\int_{0}^{a} \frac{1}{x^{p}} d x$ diverges $^{(11)}$.
- For $p<1: \int_{a}^{\infty} \frac{1}{x^{p}} d x$ diverges ${ }^{(12)}$ and $\int_{0}^{a} \frac{1}{x^{p}} d x$ converges $^{(13)}$.

QUESTIONS

(1) What happens when $p=1$? Do the p-integrals $\int_{a}^{\infty} \frac{1}{x} d x$ and $\int_{0}^{a} \frac{1}{x} d x$ converge or diverge? SOLUTION:

$$
\begin{aligned}
& \int_{a}^{\infty} \frac{1}{x} d x=\lim _{R \rightarrow \infty} \ln |R|-\ln |a|=\infty \\
& \int_{0}^{a} \frac{1}{x} d x=\lim _{R \rightarrow 0}(\ln |a|-\ln |R|)=\infty
\end{aligned}
$$

Both diverge.
(2) Show that $\int_{1}^{\infty} \frac{1}{\sqrt{x^{4}+1}} \mathrm{~d} x$ converges by comparing it with $\int_{1}^{\infty} x^{-2} d x$.

SOLUTION: We first check that $\frac{1}{\sqrt{x^{4}+1}} \leq \frac{1}{x^{2}}$: we know that $x^{4} \leq x^{4}+1$, so $\sqrt{x^{4}} \leq \sqrt{x^{4}+1}$, or equivalently, $x^{2} \leq \sqrt{x^{4}+1}$. Therefore,

$$
\frac{1}{x^{2}} \geq \frac{1}{\sqrt{x^{4}+1}}
$$

So we can use the comparison test: if $\int_{1}^{\infty} x^{-2} d x$ converges, then so does $\int_{1}^{\infty} \frac{1}{\sqrt{x^{4}+1}} d x$. But the first one does because it's a p integral with $p>1$.
(3) Determine whether the following integrals converge or diverge.
(a) $\int_{1}^{\infty} \frac{1-\sin x}{x^{3}+x} d x$

SOLUTION: Converges: $\frac{1-\sin x}{x^{3}+x} \leq \frac{2}{x^{3}+x} \leq \frac{2}{x^{3}}$ for every $x \in(1, \infty)$ and $\int_{1}^{\infty} \frac{2}{x^{3}}$ converges, so by the comparison theorem our original integral converges as well.
(b) $\int_{0}^{1} \frac{e^{x}}{x^{2}} d x$

SOLUTION: Diverges; $\frac{e^{x}}{x^{2}} \geq \frac{1}{x^{2}}$ for every $x \in(0,1)$, and $\int_{0}^{1} \frac{1}{x^{2}}$ diverges, so by the comparison theorem our original integral diverges as well.
(4) Show that $0 \leq e^{-x^{2}} \leq e^{-x}$ for $x \geq 1$. Then use the comparison test to show that $\int_{-\infty}^{\infty} e^{-x^{2}} d x$ converges.
SOLUTION: Note that $e^{-x^{2}} \leq e^{-x}$ for $x \in(1, \infty)$ (make sure you see why this is true) and

$$
\int_{1}^{\infty} e^{-x} d x=\lim _{R \rightarrow \infty} \int_{1}^{R} e^{-x} d x=\lim _{R \rightarrow \infty}-e^{R}+e^{-1}=e^{-1}
$$

Applying the comparison theorem we get that $\int_{1}^{\infty} e^{-x^{2}} d x$ converges.
Similarly, $e^{-x^{2}} \leq e^{x}$ for $x \in(-\infty,-1)$, and

$$
\int_{-\infty}^{-1} e^{x} d x=e^{-1}
$$

so applying the comparison theorem we get that $\int_{-\infty}^{-1} e^{-x^{2}} d x$ converges.
Thus,

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\int_{1}^{\infty} e^{-x^{2}} d x+\int_{-1}^{1} e^{-x^{2}} d x+\int_{-\infty}^{-1} e^{-x^{2}} d x
$$

where the two improper integrals converge, and the middle integral is just a constant (since $e^{-x^{2}}$ is continuous on the bounded interval $(-1,1)$).

