§8.7 (IMPROPER INTEGRALS)

NAME: \qquad
18 July 2018

IMPROPER INTEGRALS

The improper integral of f over $[a, \infty)$ is defined as

$$
\int_{a}^{\infty} f(x) d x=\square
$$

We say that the improper integral converges if \qquad , and diverges if

If $f(x)$ is continuous on $[a, b)$ with an infinite discontinuity at $x=b$, then the improper integral of f over $[a, b]$ is defined as:

$$
\int_{a}^{b} f(x) d x=\square
$$

If $f(x)$ is continuous on $[a, b]$ and f has an infinite discontinuity at $f(x)=c$, where $a<c<b$, then the improper integral of f over the interval $[a, c]$ is defined as:

$$
\int_{a}^{b} f(x) d x=
$$

Questions

(1) Consider the integral $\int_{-\infty}^{\infty} x d x$.
(a) Compute $\lim _{a \rightarrow \infty} \int_{-a}^{a} x d x$.
(b) Is it fair to say that $\int_{-\infty}^{\infty} x d x$ converges? If not, then how should we define the improper integral $\int_{-\infty}^{\infty} x d x$?
(2) Which of the following integrals is improper? Explain your answer but don't evaluate the integral.
(a) $\int_{0}^{2} \frac{d x}{x^{1 / 3}}$
(b) $\int_{1}^{\infty} \frac{d x}{x^{0.2}}$
(c) $\int_{-1}^{\infty} e^{-x} d x$
(d) $\int_{0}^{1} e^{-x} d x$
(e) $\int_{0}^{\pi} \sec x d x$
(f) $\int_{0}^{\infty} \sin x d x$
(g) $\int_{0}^{1} \sin x d x$
(h) $\int_{0}^{1} \frac{d x}{\sqrt{3-x^{2}}}$
(i) $\int_{1}^{\infty} \ln x d x$
(j) $\int_{0}^{3} \ln x d x$
(3) Determine whether the improper integral converges, and if it does, evaluate it.
(a) $\int_{1}^{\infty} \frac{1}{x^{20 / 19}} d x$
(b) $\int_{20}^{\infty} \frac{1}{t} d t$
(c) $\int_{0}^{5} \frac{1}{x^{19 / 20}} d x$
(d) $\int_{1}^{3} \frac{1}{\sqrt{3-x}} d x$
(e) $\int_{-2}^{4} \frac{1}{(x+2)^{1 / 3}} d x$

The Comparison Test

The Comparison Test: Assume that $f(x) \geq g(x) \geq 0$ for $x \geq a$. Then,

- If $\int_{a}^{\infty} \square^{(6)} d x$ converges, then $\int_{a}^{\infty} \square^{(7)} d x$ also converges.
- If $\int_{a}^{\infty} \square^{(8)} d x$ diverges, then $\int_{a}^{\infty} \square^{(9)} \mathrm{d} x$ also diverges.

Most frequently, we compare integrals to the p-integrals:

- For $p>1: \int_{a}^{\infty} \frac{1}{x^{p}} d x \square \int_{0}^{(10)}$ and $\int_{0}^{a} \frac{1}{x^{p}} d x$ \qquad
- For $\mathrm{p}<1: \int_{a}^{\infty} \frac{1}{x^{p}} \mathrm{dx} \square{ }^{(12)}$ and $\int_{0}^{a} \frac{1}{x^{p}} d x$

Questions

(1) What happens when $p=1$? Do the p-integrals $\int_{a}^{\infty} \frac{1}{x} d x$ and $\int_{0}^{a} \frac{1}{x} d x$ converge or diverge?
(2) Show that $\int_{1}^{\infty} \frac{1}{\sqrt{x^{4}+1}} d x$ converges by comparing it with $\int_{1}^{\infty} x^{-2} d x$.
(3) Determine whether the following integrals converge or diverge.
(a) $\int_{1}^{\infty} \frac{1-\sin x}{x^{3}+x} d x$
(b) $\int_{0}^{1} \frac{e^{x}}{x^{2}} d x$
(4) Show that $0 \leq e^{-x^{2}} \leq e^{-x}$ for $x \geq 1$. Then use the comparison test to show that $\int_{-\infty}^{\infty} e^{-x^{2}} d x$ converges.

