IMPROPER INTEGRALS

The **improper integral** of f over $[a, \infty)$ is defined as

$$\int_{\alpha}^{\infty} f(x) dx =$$
 (1)

We say that the improper integral **converges** if

 $^{(3)}$, and **diverges** if $^{(3)}$.

If f(x) is continuous on [a, b) with an infinite discontinuity at x = b, then the **improper integral** of f over [a, b] is defined as:

$$\int_{a}^{b} f(x) dx =$$

If f(x) is continuous on [a,b] and f has an infinite discontinuity at f(x)=c, where a < c < b, then the **improper integral** of f over the interval [a,c] is defined as:

$$\int_{a}^{b} f(x) dx =$$

QUESTIONS

- (1) Consider the integral $\int_{-\infty}^{\infty} x \, dx$.
 - (a) Compute $\lim_{\alpha \to \infty} \int_{-\alpha}^{\alpha} x \, dx$.

(b) Is it fair to say that $\int_{-\infty}^{\infty} x \, dx$ converges? If not, then how should we define the improper integral $\int_{-\infty}^{\infty} x \, dx$?

(2) Which of the following integrals is improper? Explain your answer but don't evaluate the integral.

(a)
$$\int_0^2 \frac{\mathrm{d}x}{x^{1/3}}$$

(b)
$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x^{0.2}}$$

(c)
$$\int_{-1}^{\infty} e^{-x} dx$$

$$(d) \int_0^1 e^{-x} dx$$

(e)
$$\int_0^{\pi} \sec x dx$$

(f)
$$\int_0^\infty \sin x \, dx$$

(g)
$$\int_{0}^{1} \sin x dx$$

$$(h) \int_0^1 \frac{dx}{\sqrt{3-x^2}}$$

(i)
$$\int_{1}^{\infty} \ln x dx$$

(j)
$$\int_0^3 \ln x dx$$

(3) Determine whether the improper integral converges, and if it does, evaluate it.

(a)
$$\int_{1}^{\infty} \frac{1}{x^{20/19}} \, \mathrm{d}x$$

(b)
$$\int_{20}^{\infty} \frac{1}{t} dt$$

(c)
$$\int_0^5 \frac{1}{x^{19/20}} dx$$

$$(d) \int_1^3 \frac{1}{\sqrt{3-x}} \, dx$$

(e)
$$\int_{-2}^{4} \frac{1}{(x+2)^{1/3}} \, \mathrm{d}x$$

THE COMPARISON TEST

The Comparison Test: Assume that $f(x) \ge g(x) \ge 0$ for $x \ge a$. Then,

- If \int_{α}^{∞} \int_{α}^{∞} dx converges, then \int_{α}^{∞} \int_{α}^{∞} dx also converges.
- If \int_{a}^{∞} dx diverges, then \int_{a}^{∞} dx also diverges.

Most frequently, we compare integrals to the p-integrals:

- For p > 1: $\int_{\alpha}^{\infty} \frac{1}{x^p} dx$ 10) and $\int_{0}^{\alpha} \frac{1}{x^p} dx$ 11).
- For p < 1: $\int_{\alpha}^{\infty} \frac{1}{x^p} dx$ and $\int_{0}^{\alpha} \frac{1}{x^p} dx$ (13).

QUESTIONS

(1) What happens when p = 1? Do the p-integrals $\int_{\alpha}^{\infty} \frac{1}{x} dx$ and $\int_{0}^{\alpha} \frac{1}{x} dx$ converge or diverge?

(2) Show that $\int_1^\infty \frac{1}{\sqrt{x^4+1}} dx$ converges by comparing it with $\int_1^\infty x^{-2} dx$.

(3) Determine whether the following integrals converge or diverge.

$$(a) \int_{1}^{\infty} \frac{1 - \sin x}{x^3 + x} dx$$

(b)
$$\int_0^1 \frac{e^x}{x^2} dx$$

(4) Show that $0 \le e^{-x^2} \le e^{-x}$ for $x \ge 1$. Then use the comparison test to show that $\int_{-\infty}^{\infty} e^{-x^2} dx$ converges.