(1) Find the T_{4} approximation for $\int_{0}^{4} \sqrt{x} d x$.

SOLUTION: Let $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$. We divide $[0,4]$ into 4 subintervals of width

$$
\Delta x=\frac{4-0}{4}=1
$$

with endpoints $0,1,2,3,4$. With this data, we get

$$
\mathrm{T}_{4}=\frac{1}{2} \Delta x(\sqrt{0}+2 \sqrt{1}+2 \sqrt{2}+2 \sqrt{3}+\sqrt{4}) \approx 5.14626
$$

(2) State whether M_{10} underestimates or overestimates $\int_{1}^{4} \ln (x) d x$. SOLUTION: Let $f(x)=\ln (x)$. Then $f^{\prime}(x)=\frac{1}{x}$ and

$$
f^{\prime \prime}(x)=-\frac{1}{x^{2}}<0
$$

on the interval $[1,4]$, so $f(x)$ is concave down. Therefore, the midpoint rule overestimates the integral.
(3) Approximate the arc length of the curve $y=\sin (x)$ over the interval $[0, \pi / 2]$ using the midpoint approximation M_{8}.
SOLUTION: Since $y=\sin (x)$, we have

$$
1+\left(y^{\prime}\right)^{2}=1+\cos ^{2}(x)
$$

Therefore, $\sqrt{1+\left(y^{\prime}\right)^{2}}=\sqrt{1+\cos ^{2}(x)}$, and the arc length over $[0, \pi / 2]$ is

$$
\int_{0}^{\pi / 2} \sqrt{1+\cos ^{2}(x)} d x
$$

Let $f(x)=\sqrt{1+\cos ^{2}(x)} \cdot M_{8}$ is the midpoint approximation with eight subdivisions. So

$$
\begin{aligned}
\Delta x & =\frac{\pi / 2-0}{8}=\frac{\pi}{16} \\
x_{i} & =0+\left(i-\frac{1}{2}\right) \Delta x \quad \text { for } i=1,2, \ldots, 8 \\
y_{i} & =f\left(\left(i-\frac{1}{2}\right) \Delta x\right) \\
M_{8} & =\sum_{i=1}^{8} y_{i} \Delta x=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{8}\right) \Delta x \\
& \\
& \begin{array}{rll}
i & x_{i} & f\left(x_{i}\right)=y_{i} \\
1 & 0.5 & 1.41081 \\
2 & 1.5 & 1.3841 \\
3 & 2.5 & 1.3333 \\
4 & 3.5 & 1.26394 \\
5 & 4.5 & 1.18425 \\
6 & 5.5 & 1.10554 \\
7 & 6.5 & 1.04128 \\
8 & 7.5 & 1.00479
\end{array}
\end{aligned}
$$

The final answer is that the arc length is approximately 1.9101 .
(4) Find a number N for which $\operatorname{Error}\left(T_{N}\right) \leq 10^{-6}$ for $\int_{0}^{3} e^{-x} d x$.

SOLUTION: Let $f(x)=e^{-x}$, so that $f^{\prime \prime}(x)=e^{-x}$, which has a maximum value of $1($ at $x=0)$ on $[0,3]$. Hence we can take $K_{2}=1$, and so

$$
\operatorname{Error}\left(\mathrm{T}_{\mathrm{N}}\right) \leq \frac{\mathrm{K}_{2}(\mathrm{~b}-\mathrm{a})^{3}}{12 \mathrm{~N}^{2}}=\frac{(1)(3)^{3}}{12 \mathrm{~N}^{2}}=\frac{27}{12 \mathrm{~N}^{2}}
$$

We want to find N for which

$$
\frac{27}{12 \mathrm{~N}^{2}} \leq 10^{-6}
$$

which means that we need

$$
\mathrm{N} \geq \sqrt{\frac{27 \cdot 10^{6}}{12}}=1500
$$

Hence taking N greater than or equal to 1500 will do the trick.
(5) Since Simpson's Rule can be derived by using quadratic polynomials (parabolas) to approximate a function, it makes sense that Simpson's rule gives the exact value for integrals of quadratic polynomials.
(a) Prove the statement above. In other words, show that the integral of a quadratic polynomial $f(x)=$ $A+B x+C x^{2}$ over an interval $[a, b]$ exactly coincides with the Simpson's Rule approximation S_{2}.
(b) Perhaps unexpectedly, Simpson's Rule also gives the exact result for integrals of cubic polynomials. Show this as well: the integral of $g(x)=A+B x+C x^{2}+D x^{3}$ over $[a, b]$ is equal to the Simpson's Rule approximation S_{2}.
(c) Take another look at the error bound for Simpson's Rule. Is there a quicker way to prove the previous two results without calculating the integrals?
SOLUTION: The error bound formula has a term K_{4}, which is a bound on the fourth derivative of $f(x)$ over the interval $[a, b]$. Since quadratic and cubic polynomials both have fourth derivatives equal to zero, we can take $K_{4}=0$, and so according to the error formula the Simpson's Rule error should be zero. In other words, the approximation gives the exact value.

This is the graph of

$$
y=(\pi) e^{-x^{2}(1+\cos (x))}+\frac{1}{2} x
$$

The integral from $x=0$ to $x=4.5$ is approximately
$10.08816325863157 \pm 1.52581389892617 \cdot 10^{-8}$

