(1) Find the T_4 approximation for $\int_0^4 \sqrt{x} \, dx$.

SOLUTION: Let $f(x) = \sqrt{x}$. We divide [0,4] into 4 subintervals of width

$$\Delta x = \frac{4-0}{4} = 1,$$

with endpoints 0, 1, 2, 3, 4. With this data, we get

$$T_4 = \frac{1}{2} \Delta x \left(\sqrt{0} + 2\sqrt{1} + 2\sqrt{2} + 2\sqrt{3} + \sqrt{4} \right) \left[\approx 5.14626. \right]$$

(2) State whether M_{10} underestimates or overestimates $\int_{1}^{4} \ln(x) dx$.

SOLUTION: Let $f(x) = \ln(x)$. Then $f'(x) = \frac{1}{x}$ and

$$f''(x) = -\frac{1}{x^2} < 0$$

on the interval [1,4], so f(x) is concave down. Therefore, the midpoint rule overestimates the integral.

(3) Approximate the arc length of the curve $y = \sin(x)$ over the interval $[0, \pi/2]$ using the midpoint approximation M_8 .

SOLUTION: Since $y = \sin(x)$, we have

$$1 + (y')^2 = 1 + \cos^2(x)$$

Therefore, $\sqrt{1+(y')^2}=\sqrt{1+\cos^2(x)}$, and the arc length over $[0,\pi/2]$ is

$$\int_{0}^{\pi/2} \sqrt{1 + \cos^2(x)} \, dx.$$

Let $f(x) = \sqrt{1 + \cos^2(x)}$. M_8 is the midpoint approximation with eight subdivisions. So

$$\Delta x = \frac{\pi/2 - 0}{8} = \frac{\pi}{16}$$

$$x_{i} = 0 + (i - \frac{1}{2})\Delta x \qquad \text{for } i = 1, 2, ..., 8$$

$$y_{i} = f\left((i - \frac{1}{2})\Delta x\right)$$

$$M_{8} = \sum_{i=1}^{8} y_{i}\Delta x = f(x_{1})\Delta x + f(x_{2})\Delta x + ... + f(x_{8})\Delta x$$

i
$$x_i$$
 $f(x_i) = y_i$
1 0.5 1.41081
2 1.5 1.3841
3 2.5 1.3333
4 3.5 1.26394
5 4.5 1.18425
6 5.5 1.10554
7 6.5 1.04128
8 7.5 1.00479

The final answer is that the arc length is approximately 1.9101

(4) Find a number N for which $\operatorname{Error}(T_N) \le 10^{-6}$ for $\int_0^3 e^{-x} dx$.

SOLUTION: Let $f(x) = e^{-x}$, so that $f''(x) = e^{-x}$, which has a maximum value of 1 (at x = 0) on [0,3]. Hence we can take $K_2 = 1$, and so

$$\operatorname{Error}(T_N) \le \frac{K_2(b-a)^3}{12N^2} = \frac{(1)(3)^3}{12N^2} = \frac{27}{12N^2}.$$

We want to find N for which

$$\frac{27}{12N^2} \le 10^{-6},$$

which means that we need

$$N \ge \sqrt{\frac{27 \cdot 10^6}{12}} = 1500.$$

Hence taking N greater than or equal to 1500 will do the trick.

(5)	Since Simpson's Rule can be derived by using quadratic polynomials (parabolas) to app	roximate a
	function, it makes sense that Simpson's rule gives the exact value for integrals of quadratic p	olynomials

(a) Prove the statement above. In other words, show that the integral of a quadratic polynomial $f(x) = A + Bx + Cx^2$ over an interval [a, b] exactly coincides with the Simpson's Rule approximation S_2 .

(b) Perhaps unexpectedly, Simpson's Rule also gives the exact result for integrals of cubic polynomials. Show this as well: the integral of $g(x) = A + Bx + Cx^2 + Dx^3$ over [a, b] is equal to the Simpson's Rule approximation S_2 .

- (c) Take another look at the error bound for Simpson's Rule. Is there a quicker way to prove the previous two results without calculating the integrals?
 - SOLUTION: The error bound formula has a term K_4 , which is a bound on the fourth derivative of f(x) over the interval [a,b]. Since quadratic and cubic polynomials both have fourth derivatives equal to zero, we can take $K_4=0$, and so according to the error formula the Simpson's Rule error should be zero. In other words, the approximation gives the exact value.

This is the graph of

$$y = (\pi) e^{-x^2(1+\cos(x))} + \frac{1}{2}x$$

The integral from x=0 to x=4.5 is approximately $10.08816325863157 \pm 1.52581389892617 \cdot 10^{-8}$