§8.9 (NUMERICAL INTEGRATION) NAME: SOLUTIONS
20 July 2018

4
(1) Find the T4 approximation for J' Vx dx.
0

SOLUTION: Let f(x) = /x. We divide [0, 4] into 4 subintervals of width

4—0
:7:1
Ax 7] ,

with endpoints 0, 1, 2, 3,4. With this data, we get

T :%Ax (\f0+2\f1+2ﬁ+2\f3+\/21)

4

(2) State whether My underestimates or overestimates J In(x) dx.
1

SOLUTION: Let f(x) = In(x). Then f/(x) = % and

on the interval [1,4], so f(x) is concave down. Therefore, the midpoint rule overestimates the integral.



(3) Approximate the arc length of the curve y = sin(x) over the interval [0, ”"/,] using the midpoint
approximation Mg.

SOLUTION: Since y = sin(x), we have

1+ (y')2 =1+ cos?(x)

Therefore, \/ T+ )2 = \/ 1+ cos?(x), and the arc length over [0, 7t/2] is

/2
J 1+ cos?(x) dx.
0

Let f(x) = /1 + cos?(x). Mg is the midpoint approximation with eight subdivisions. So

/2—0 T
Ax = 16
xi =0+ (i—3)Ax fori=1,2,...,8
yi = ((i- 1))

8

Mg = ZgiAx = f(x7)Ax + f(x2)Ax + ...+ f(xg)Ax

i=1

xi  flxi) =y;
0.5 1.41081
1.5 1.3841

25 1.3333

3.5 1.263%4
45 1.18425
55 1.10554
6.5 1.04128
7.5 1.00479

The final answer is that the arc length is approximately | 1.9101 |.

0 N O Ul AW N = e

3
(4) Find a number N for which Error(Ty) < 107 for J' e X dx.
0

SOLUTION: Let f(x) = e™%, so that f/(x) = e, which has a maximum value of 1 (at x = 0) on [0, 3].
Hence we can take K, = 1, and so

Error(Ty) < K20 _ (B _ 27

12NZ2 ~ 12NZ 1282
We want to find N for which

27

=L _<10°°®

12N2 — 0",

which means that we need

[27 106
> = .
N > 2 1500

Hence taking N greater than or equal to 1500 will do the trick.



(5) Since Simpson’s Rule can be derived by using quadratic polynomials (parabolas) to approximate a
function, it makes sense that Simpson’s rule gives the exact value for integrals of quadratic polynomials.

(a) Prove the statement above. In other words, show that the integral of a quadratic polynomial f(x) =
A + Bx + Cx? over an interval [a, b] exactly coincides with the Simpson’s Rule approximation S;.

(b) Perhaps unexpectedly, Simpson’s Rule also gives the exact result for integrals of cubic polynomials.
Show this as well: the integral of g(x) = A + Bx + Cx? + Dx> over [q, b] is equal to the Simpson’s
Rule approximation S;.

(c) Take another look at the error bound for Simpson’s Rule. Is there a quicker way to prove the
previous two results without calculating the integrals?
SOLUTION: The error bound formula has a term K4, which is a bound on the fourth derivative of
f(x) over the interval [a, b]. Since quadratic and cubic polynomials both have fourth derivatives
equal to zero, we can take K4 = 0, and so according to the error formula the Simpson’s Rule error
should be zero. In other words, the approximation gives the exact value.
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This is the graph of

y = (n) e—xz(l—i—cos(x)) + %X

The integral from x = 0 to x = 4.5 is approximately
10.08816325863157 + 1.52581389892617-10~8



