§8.9 (NUMERICAL INTEGRATION) NAME:
20 July 2018
(1) Find the T_{4} approximation for $\int_{0}^{4} \sqrt{x} d x$.
(2) State whether M_{10} underestimates or overestimates $\int_{1}^{4} \ln (x) d x$.
(3) Approximate the arc length of the curve $y=\sin (x)$ over the interval $[0, \pi / 2]$ using the midpoint approximation M_{8}.
(4) Find a number N for which $\operatorname{Error}\left(T_{N}\right) \leq 10^{-6}$ for $\int_{0}^{3} e^{-x} d x$.
(5) Since Simpson's Rule can be derived by using quadratic polynomials (parabolas) to approximate a function, it makes sense that Simpson's rule gives the exact value for integrals of quadratic polynomials.
(a) Prove the statement above. In other words, show that the integral of a quadratic polynomial $f(x)=$ $A+B x+C x^{2}$ over an interval $[a, b]$ exactly coincides with the Simpson's Rule approximation S_{2}.
(b) Perhaps unexpectedly, Simpson's Rule also gives the exact result for integrals of cubic polynomials. Show this as well: the integral of $g(x)=A+B x+C x^{2}+D x^{3}$ over $[a, b]$ is equal to the Simpson's Rule approximation S_{2}.
(c) Take another look at the error bound for Simpson's Rule. Is there a quicker way to prove the previous two results without calculating the integrals?

