(1) Find the T_4 approximation for $\int_0^4 \sqrt{x} dx$.

(2) State whether M_{10} underestimates or overestimates $\int_1^4 \ln(x) dx$.

(3) Approximate the arc length of the curve $y = \sin(x)$ over the interval $[0, \pi/2]$ using the midpoint approximation M_8 .

(4) Find a number N for which $\operatorname{Error}(T_N) \leq 10^{-6}$ for $\int_0^3 e^{-x} \ dx$.

(5)	Since Simpson's Rule can be derived by using quadratic polynomials (parabolas) to approximate
	function, it makes sense that Simpson's rule gives the exact value for integrals of quadratic polynomials

(a) Prove the statement above. In other words, show that the integral of a quadratic polynomial $f(x) = A + Bx + Cx^2$ over an interval [a, b] exactly coincides with the Simpson's Rule approximation S_2 .

(b) Perhaps unexpectedly, Simpson's Rule also gives the exact result for integrals of cubic polynomials. Show this as well: the integral of $g(x) = A + Bx + Cx^2 + Dx^3$ over [a, b] is equal to the Simpson's Rule approximation S_2 .

(c) Take another look at the error bound for Simpson's Rule. Is there a quicker way to prove the previous two results without calculating the integrals?