
MATH 1910 Workshop Solution Fractals

Introduction: Fractals are natural phenomena or mathematical sets which exhibit (among
other properties) self–similarity: no matter how much we zoom in, the structure remains the
same. The Koch snowflake, created by the infinite–step process whose first four iterations
are shown below, is one example of a fractal:

The process of constructing a mathematical fractal is always infinite. In practice, though,
self–similarity is limited by our perception and the actual construction or calculation limits
of the system or object. Even the naturally–occurring fractal properties of an ocean coast-
line, for instance, can’t continue down to the molecular level! Despite this, self–similarity
and fractals have many applications ranging from computer graphics (generating realistic
landscapes for games, etc.) to signal compression, to soil mechanics, to highly-efficient an-
tenna designs (a good antenna often needs to have large surface area while remaining very
compact).

Goals:

• Practice working with infinite series.

• Understand the relationship between volume and surface area in 3D fractals.

Problems: We’ll consider a 3–dimensional version of the Koch snowflake: a sphereflake!
This fractal is created as follows: start with a sphere of radius 1. To this large sphere, attach
9 smaller spheres of radius 1/3. To each of these nine spheres, attach nine spheres of radius
1/9, and so on. To each sphere of radius r, attach nine spheres of radius r/3, for infinite
iterations.

a) What is the total volume of the sphereflake?
Hint: You may use the fact that the volume of a sphere is V = 4

3
πr3.

Solution. Since the sphereflake is constructed in an infinite process, we expect to
represent its volume with an infinite series.

There are 9n spheres of radius
1

3n
in the sphereflake.

The volume of a sphere of radius r is
4

3
πr3, so the volume of the sphereflake is

∞∑
n=0

9n · 4π

3

(
1

3n

)3

=
∞∑
n=0

4π

3
· 32n

33n
=
∞∑
n=0

4π

3
· 1

3n
=

4π

3

∞∑
n=0

1

3n
.
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We note that this infinite series is a geometric series of the form
∞∑
n=0

Crn with r = 1/3.

Since |r| < 1, we know that it converges to

∞∑
n=0

Crn =
C

1− r
.

For r = 1/3 and C = 1, the geometric series converges to 3/2 and the volume of the
sphereflake is

V =
4π

3
· 3

2
= 2π.

As a reminder, here is how we find the value of a geometric series when |r| < 1:

N∑
n=0

Crn − r
N∑

n=0

Crn = C + Cr + · · ·+ CrN − (Cr + Cr2 + · · ·+ CrN+1),

(1− r)
N∑

n=0

Crn = C − CrN+1,

∞∑
n=0

Crn = lim
N→∞

N∑
n=0

Crn = lim
N→∞

C(1− rN+1)

1− r
=

C

1− r
, |r| < 1.

b) What is the total surface area of the sphereflake?
Hint: You may use the fact that the surface area of a sphere is A = 4πr2.
Solution. The surface area of a sphere of radius r is 4πr2, so the area of the sphereflake
is

∞∑
n=0

9n4π

(
1

3n

)2

=
∞∑
n=0

4π = 4π
∞∑
n=0

1 −→ ∞.

So, a sphereflake has an “infinite surface area” but a finite volume!

Remark: Although this result may seem surprising, there is no paradox here. Remem-
ber that the sphereflake is obtained by an infinite process, and its volume and area are
defined to be the limits of growing partial sums, and those limits can either converge
(as in the first case) or diverge (as in the second case). At the same time, an unbounded
geometric body does not have to be fractal-like to have a finite volume and infinite
surface area; by now you should have seen an example of that in the homework.
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c) To generalize this example, suppose that the initial sphere is of radius r0 = R, each
next level consists of spheres of radius rn+1 = αrn for some positive α < 1, and there
are m ≥ 1 balls of radius rn+1 attached to each ball of radius rn. We will ignore
the possibility of spheres intersecting (“attached” does not have to mean “touching”).
What relation between α and m guarantees that the sphereflake will have a finite vol-
ume? finite surface area?

Solution. The total number of spheres of radius rn is mn. Generalizing the above,
the volume is

V =
∞∑
n=0

mn · 4π

3
(αnR)3 =

4πR3

3

∞∑
n=0

(mα3)n;

so, m < α−3 will guarantee convergence. For the surface area,

A =
∞∑
n=0

mn · 4π (αnR)2 = 4πR2

∞∑
n=0

(mα2)n;

so, m < α−2 will guarantee convergence. Since α < 1, whenever the surface area is
finite, the volume is finite as well.

d) Without resorting to “the interwebs,” brainstorm with your group to come up with a
list of objects or concepts which exhibit or approximate self-similarity.

Solution. A (by no means exhaustive) list:

• trees

• feathers

• blood vessels

• river systems

• ocean waves

All of these examples have the same “shape” on many length scales.

Workshop takeaways:

• 3D fractals can have infinite surface area with finite volume.

• Mathematical series can be used to describe natural phenomena.
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REVIEW

• A sequence (1) is a list of numbers a0,a1,a2, . . .. It doesn’t have to start with zero.

• A series
(2)

is the sum of the terms in a sequence:

∞∑
i=0

ai

• A sequences is called:

(a) bounded
(3)

if there exists M such that |an| ≤M for all n.

(b) monotone
(4)

if either an < an+1 or an > an+1 for all n.

If a sequence is both of the above, then it converges.

• If f is continuous
(5)

and lim
n→∞an = L, then lim

n→∞ f(an) = f(L).

• A sequence that looks like an = crn is called geometric
(6)

.

PROBLEMS

(1) Determine the limit of the sequence or show that the sequence diverges.

(a) an =
en

2n

SOLUTION:
an =

en

2n
=
(e
2

)n
Note that e > 2, so e/2 > 1. Hence,

lim
n→∞an = lim

n→∞
(e
2

)n
= ∞.

(b) bn =
3n+ 1

2n+ 4
SOLUTION: As n → ∞, the top and the bottom are both polynomial of the same degree, so only
the leading coefficients matter. Hence,

lim
n→∞ 3n+ 1

2n+ 4
=

3

2
.
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(c) cn =

√
n√

n+ 4

SOLUTION:

lim
n→∞

√
n√

n+ 4
= lim

n→∞
√
n√
n√

n√
n
+ 4√

n

= lim
n→∞ 1

1+ 4√
n

=
1

1+ 0
= 1.

(d) cn =
(lnn)2

n
SOLUTION: Use L’Hôpital’s Rule twice:

lim
n→∞ (lnn)2

n
= lim

n→∞ 2(lnn) 1n
1

= 2 lim
n→∞ lnn

n
= 2 lim

n→∞
1
n

1
= 0.

(2) Show that the sequence given by an =
3n2

n2 + 2
is strictly increasing, and find an upper bound.

SOLUTION: Consider the function f(x) = 3x2

x2+2
. The derivative of f is

f ′(x) =
12x

(x2 + 2)2
.

For x > 0, f ′(x) > 0, so the function is strictly increasing. Therefore, the sequence an = f(n) is strictly
increasing.

To find an upper bound, observe that

an =
3n2

n2 + 2
≤ 3n2 + 6

n2 + 2
=

3(n2 + 2)

n2 + 2
= 3.

Therefore, M = 3 is an upper bound.
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(3) Let {an} be the sequence defined recursively by

a0 = 0, an+1 =
√
2+ an

(a) Write the first four terms of the sequence.

SOLUTION: a0 = 0, a1 =
√
2, a2 =

√
2+
√
2, a3 =

√
2+

√
2+
√
2

(b) Show that the sequence {an} is increasing.
SOLUTION: We have a0 = 0 <

√
2 = a1. Now assume that it’s true for n, that is, an ≤ an+1,

and show it for n+ 1¡ that is, show that an+1 ≤ an+2.

an+1 =
√
2+ an ≤

√
2+ an+1 = an+2

(c) Show that the sequence is bounded above by M = 2.
SOLUTION: Again, the first case is simple since a0 = 0 ≤ 2. Now assume that it’s true for n, that
is, an ≤ 2, and show it’s true for n+ 1, that is, an+1 ≤ 2.

an+1 =
√
2+ an ≤

√
2+ 2 =

√
4 = 2

(d) Prove that lim
n→∞an exists and compute it.

SOLUTION: Since the sequence is increasing and bounded above, the limit exists. To compute it,
we do

L = lim
n→∞an = lim

n→∞
√

2+ an−1 =
√

2+ lim
n→∞an−1 =

√
2+ L

Then L =
√
2+ L, from which we get that either L = 2 or L = −1. But all terms of the sequence

are positive, so it must be L = 2.
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(4) Consider the sequence {an} where an =
1

2n+ 1
.

(a) Show that {an} is decreasing.

SOLUTION: an+1 =
1

2(n+ 1) + 1
=

1

2n+ 3
<

1

2n+ 1
= an, so {an} is decreasing. You can also

use derivatives to show this.

(b) Find bounds Ml and Mu such that Ml ≤ an ≤Mu for every n.

SOLUTION: Note that
1

2n+ 1
is always positive, so we can take Ml = 0. Also, since {an} is

decreasing, we know that the biggest term will be the first, a0 = 1, so we can take Mu = 1.

(c) Show that lim
n→∞an exists without computing it. Then compute it.

SOLUTION: From parts (a) and (b) we know that {an} is a decreasing sequence that’s also bounded
below, so it must converge.

To compute it, lim
n→∞an = lim

n→∞ 1

2n+ 1
= 0.

4



(5) Use the fact that
sin 1

n
1
n

→ 1 as n → ∞ to find the limit of

an = n

(
1−

√
1− sin

1

n

)
.

SOLUTION: Multiply and divide by 1+
√

1− sin(1/n):

an = n

(
1−

√
1− sin

1

n

)
1+

√
1− sin 1

n

1+
√

1− sin 1
n

= n

(
1−

(
1− sin

1

n

))
1

1+
√

1− sin 1
n

=
sin 1

n
1
n

1

1+
√

1− sin 1
n

= 1 · 1

1+
√
1− 0

=
1

2
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