Convergence Tests for Series

- The divergence test: If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
- A series that looks like $a_{n}=\operatorname{cr}^{n}$ is called geometric.
(a) If $|r| \geq 1$, then it diverges.
(b) If $|\mathrm{r}|<1$, then $\sum_{\mathrm{n}=\mathrm{K}}^{\infty} \mathrm{cr}^{\mathrm{n}}=\frac{\mathrm{cr}^{\mathrm{K}}}{1-\mathrm{r}}$
- The integral test: Assume that $a_{n}=f(n)$ for $n \geq M$.
(a) If $\int_{M}^{\infty} f(x) d x$ converges, then $\sum_{n=0}^{\infty} a_{n}$ converges.
(b) If $\int_{M}^{\infty} f(x) d x$ diverges, then $\sum_{n=0}^{\infty} a_{n}$ diverges.
- The comparison test:
(a) If $a_{n} \leq b_{n}$, and $\sum_{n=0}^{\infty} b_{n}$ converges, then $\sum_{n=0}^{\infty} a_{n}$ converges.
(b) If $\sum_{n=0}^{\infty} a_{n}$ diverges, then $\sum_{n=0}^{\infty} b_{n}$ diverges.
- Limit comparison test: Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences with positive terms. Let $L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$.
(a) If $L>0$, then $\sum a_{n}$ converges if and only if $\sum b_{n}$ converges.
(b) If $L=\infty \quad$ and $\sum a_{n}$ converges, then $\sum b_{n}$ converges.
(c) If $L=0 \quad$ and $\sum b_{n}$ converges, then $\sum a_{n}$ converges.

Problems

(1) Determine the limit of the series or show that the series diverges.
(a) $\sum_{n=0}^{\infty}\left(\frac{1}{4}\right)^{n}$

SOLUTION: This is geometric, and converges to $\frac{1}{1-1 / 4}=\frac{4}{3}$.
(b) $\sum_{n=0}^{\infty} e^{n}$

SOLUTION: $\lim _{n \rightarrow \infty} e^{\mathfrak{n}}=\infty$, so this diverges.
(c) $\sum_{n=1}^{\infty} \frac{1}{n}$.

SOlution: This is the Harmonic series, which diverges.
(d) $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$

Solution: This is a telescoping series. First perform partial fractions to see that

$$
\frac{1}{n(n-1)}=\frac{-1}{n}+\frac{1}{n-1}
$$

Then the sum is

$$
\sum_{n=2}^{\infty} \frac{1}{n(n-1)}=\sum_{n=2}^{\infty}\left(\frac{1}{n-1}-\frac{1}{n}\right)=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots=1
$$

(e) $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{2}+1}}$

SOLUTION: Since $\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+1}}=1 \neq 0$, the series diverges by the Divergence Test.
(f) $\sum_{n=0}^{\infty} \frac{9^{n}+2^{n}}{5^{n}}$

Solution: We can write

$$
\sum_{n=0}^{\infty} \frac{9^{n}+2^{n}}{5^{n}}=\sum_{n=0}^{\infty}\left[\left(\frac{9}{5}\right)^{n}+\left(\frac{2}{5}\right)^{n}\right] .
$$

Since $\sum(9 / 5)^{n}$ diverges (as $9 / 5>1$), the entire series must diverge.
(g) $\sum_{n=1}^{\infty} \cos (\pi n)$

SOLUTION: Notice that $\cos (\pi n)=(-1)^{n}$, so this series diverges.
(h) $\sum_{n=1}^{\infty} \cos \frac{1}{n}$

SOLUTION: We have $\lim _{\mathrm{n} \rightarrow \infty}=\cos 0=1$, so this series diverges by the divergence test.
(i) $\sum_{n=2}^{\infty} \frac{n^{2}}{n^{4}-1}$ (Limit Comparison Test)

SOLUTION: Use the limit comparison test. Let $a_{n}=\frac{n^{2}}{n^{4}-1}$. Since for n large, $\frac{n^{2}}{n^{4}-1} \approx \frac{n^{2}}{n^{4}}=\frac{1}{n^{2}}$, apply Limit comparison with $b_{n}=\frac{1}{n^{2}}$.

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{n^{2}}{n^{4}-1}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{4}}{n^{4}-1}=1 \neq 0 .
$$

We know that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges because it's a p-series, so $\sum_{n=2}^{\infty} a_{n}$ also converges.
(j) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+2^{n}}$ (Comparison Test)

Solution: For $n \geq 1$, we have

$$
\frac{1}{\sqrt{n}+2^{n}} \leq \frac{1}{2^{n}}=\left(\frac{1}{2}\right)^{n}
$$

The series $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$ converges since it is geometric with $r=1 / 2$. So the comparison test tells us that this series converges too.
(k) $\sum_{n=2}^{\infty} \frac{1}{\mathfrak{n}(\ln n)^{2}}$ (Integral Test)

SOLUTION: Integrate

$$
\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} d x .
$$

Substitute $u=\ln x, d u=\frac{1}{x} d x$. Then

$$
\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} \mathrm{~d} x=\int_{\ln 2}^{\infty} \frac{1}{u^{2}} \mathrm{du}=-\left.\frac{1}{\mathrm{u}}\right|_{\ln 2} ^{\infty}=-\frac{1}{\ln \infty}+\frac{1}{\ln 2}=\frac{1}{\ln 2}
$$

The integral converges, so the series converges as well.
(2) Give a counterexample to show that each of the following statements is false.
(a) If the general term a_{n} tends to zero, then $\sum a_{n}$ converges.

SOLUTION: $\sum \frac{1}{n}$ diverges even through $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$.
(b) The Nth partial sum of the infinite series defined by $\left\{a_{n}\right\}$ is equal to a_{N}.

SOLUTION: Almost any nonzero series will work as a counterexample here. For instance, consider the series in 2(a), below.
(c) If $a_{n} \rightarrow L$, then $\sum_{n=0}^{\infty} a_{n}=L$.

SOLUTION: If a_{n} is a positive sequence for which $\sum a_{n}$ converges, then we must have $a_{n} \rightarrow 0$, but $\sum a_{n}>0$. (Again, if you are looking for a concrete example, consider the series in Problem 2(a).)
(3) Determine a reduced fraction that is equal to $0.217217217217 \ldots$....

SOLUTION: The decimal can be regarded as a geometric series

$$
0.217217217 \ldots=\frac{217}{10^{3}}+\frac{217}{10^{6}}+\frac{217}{10^{9}}+\cdots=\sum_{n=1}^{\infty} \frac{217}{10^{3 n}}=\sum_{n=1}^{\infty} 217 \cdot\left(\frac{1}{10^{3}}\right)^{n}=\frac{217 / 10^{3}}{1-1 / 10^{3}}=\frac{217}{999}
$$

(4) Let $b_{n}=\frac{\sqrt[n]{n!}}{n}$.
(a) Show that $\ln b_{n}=\frac{1}{n} \sum_{k=1}^{n} \ln \frac{k}{n}$.

SOLUTION: Start by taking logarithms:

$$
\ln b_{n}=\ln \frac{\sqrt[n]{n!}}{n}=\ln \sqrt[n]{n!}-\ln n=\frac{1}{n} \ln n!-\ln n=\frac{1}{n}(\ln n!-n \ln n)
$$

Next, notice that

$$
\begin{aligned}
\ln n! & =\ln [n(n-1)(n-2) \cdots(2)(1)] \\
& =\ln n+\ln (n-1)+\cdots+\ln 2+\ln 1=\sum_{k=1}^{n} \ln k
\end{aligned}
$$

and so we have

$$
\begin{aligned}
b_{n} & =\frac{1}{n}(\ln n!-n \ln n)=\frac{1}{n}\left(\sum_{k=1}^{n} \ln k-n \ln n\right) \\
& =\frac{1}{n} \sum_{k=1}^{n}(\ln k-\ln n)=\frac{1}{n} \sum_{k=1}^{n} \ln \frac{k}{n},
\end{aligned}
$$

which was what we wanted.
(b) Show that $\ln b_{n}$ converges to $\int_{0}^{1} \ln x d x$. Use this to compute $\lim b_{n}$.

SOLUTION: Notice that $\frac{1}{n} \sum_{k=1}^{n} \ln \frac{k}{n}$ is precisely the right hand approximation to $\int_{0}^{1} \ln x d x$; since $\ln x$ is continuous, we will have

$$
\ln b_{n} \rightarrow \int_{0}^{1} \ln x d x=\left.(x \ln x-x)\right|_{x=0} ^{1}=-1
$$

Hence $\ln \mathrm{b}_{\mathrm{n}} \rightarrow-1$ implies $\mathrm{b}_{\mathrm{n}} \rightarrow \mathrm{e}^{-1}$.

