
§11.2 (SERIES)
§11.3 (SERIES WITH POSITIVE TERMS) NAME: SOLUTIONS
July 24, 2018

CONVERGENCE TESTS FOR SERIES

• The divergence test: If lim
n→∞an 6= 0, then

∞∑
n=1

an diverges.

• A series that looks like an = crn is called geometric.

(a) If |r| ≥ 1, then it diverges.

(b) If |r| < 1, then
∞∑

n=K

crn =
crK

1− r

• The integral test: Assume that an = f(n) for n ≥M.

(a) If
∫∞
M
f(x)dx converges, then

∞∑
n=0

an converges.

(b) If
∫∞
M
f(x)dx diverges, then

∞∑
n=0

an diverges.

• The comparison test:

(a) If an ≤ bn, and
∞∑

n=0

bn converges, then
∞∑

n=0

an converges.

(b) If
∞∑

n=0

an diverges, then
∞∑

n=0

bn diverges.

• Limit comparison test: Let {an} and {bn} be sequences with positive terms. Let L = lim
n→∞ an

bn
.

(a) If L > 0
(1)

, then
∑
an converges if and only if

∑
bn converges.

(b) If L = ∞ (2)
and

∑
an converges, then

∑
bn converges.

(c) If L = 0
(3)

and
∑
bn converges, then

∑
an converges.
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PROBLEMS

(1) Determine the limit of the series or show that the series diverges.

(a)
∞∑

n=0

(
1

4

)n

SOLUTION: This is geometric, and converges to 1
1−1/4 = 4

3 .

(b)
∞∑

n=0

en

SOLUTION: limn→∞ en = ∞, so this diverges.

(c)
∞∑

n=1

1

n
.

SOLUTION: This is the Harmonic series, which diverges.

(d)
∞∑

n=2

1

n(n− 1)

SOLUTION: This is a telescoping series. First perform partial fractions to see that

1

n(n− 1)
=

−1

n
+

1

n− 1

Then the sum is

∞∑
n=2

1

n(n− 1)
=

∞∑
n=2

(
1

n− 1
−
1

n

)
=

(
1−

1

2

)
+

(
1

2
−
1

3

)
+

(
1

3
−
1

4

)
+ . . . = 1
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(e)
∞∑

n=1

n√
n2 + 1

SOLUTION: Since lim
n→∞ n√

n2 + 1
= 1 6= 0, the series diverges by the Divergence Test.

(f)
∞∑

n=0

9n + 2n

5n

SOLUTION: We can write

∞∑
n=0

9n + 2n

5n
=

∞∑
n=0

[(
9

5

)n

+

(
2

5

)n]
.

Since
∑

(9/5)n diverges (as 9/5 > 1), the entire series must diverge.

(g)
∞∑

n=1

cos(πn)

SOLUTION: Notice that cos(πn) = (−1)n, so this series diverges.

(h)
∞∑

n=1

cos
1

n

SOLUTION: We have lim
n→∞ = cos 0 = 1, so this series diverges by the divergence test.
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(i)
∞∑

n=2

n2

n4 − 1
(Limit Comparison Test)

SOLUTION: Use the limit comparison test. Let an = n2

n4−1
. Since for n large, n2

n4−1
≈ n2

n4 = 1
n2 ,

apply Limit comparison with bn = 1
n2 .

lim
n→∞ an

bn
= lim

n→∞
n2

n4−1
1
n2

= lim
n→∞ n4

n4 − 1
= 1 6= 0.

We know that
∞∑

n=1

1

n2
converges because it’s a p-series, so

∑∞
n=2 an also converges.

(j)
∞∑

n=1

1√
n+ 2n

(Comparison Test)

SOLUTION: For n ≥ 1, we have

1√
n+ 2n

≤ 1

2n
=

(
1

2

)n

.

The series
∑∞

n=1

(
1
2

)n
converges since it is geometric with r = 1/2. So the comparison test tells

us that this series converges too.

(k)
∞∑

n=2

1

n(lnn)2
(Integral Test)

SOLUTION: Integrate ∫∞
2

1

x(ln x)2
dx.

Substitute u = ln x, du = 1
x dx. Then∫∞

2

1

x(ln x)2
dx =

∫∞
ln2

1

u2
du = −

1

u

∣∣∣∣∞
ln2

= −
1

ln∞ +
1

ln 2
=

1

ln 2

The integral converges, so the series converges as well.
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(2) Give a counterexample to show that each of the following statements is false.

(a) If the general term an tends to zero, then
∑
an converges.

SOLUTION:
∑ 1

n
diverges even through

1

n
→ 0 as n→ ∞.

(b) The Nth partial sum of the infinite series defined by {an} is equal to aN.
SOLUTION: Almost any nonzero series will work as a counterexample here. For instance, consider
the series in 2(a), below.

(c) If an → L, then
∞∑

n=0

an = L.

SOLUTION: If an is a positive sequence for which
∑
an converges, then we must have an → 0,

but
∑
an > 0. (Again, if you are looking for a concrete example, consider the series in Problem

2(a).)

(3) Determine a reduced fraction that is equal to 0.217217217217....

SOLUTION: The decimal can be regarded as a geometric series

0.217217217... =
217

103
+
217

106
+
217

109
+ · · · =

∞∑
n=1

217

103n
=

∞∑
n=1

217.
(
1

103

)n

=
217/103

1− 1/103
=
217

999
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(4) Let bn =
n
√
n!

n
.

(a) Show that lnbn =
1

n

n∑
k=1

ln
k

n
.

SOLUTION: Start by taking logarithms:

lnbn = ln
n
√
n!

n
= ln n

√
n! − lnn =

1

n
lnn! − lnn =

1

n
(lnn! −n lnn) .

Next, notice that

lnn! = ln[n(n− 1)(n− 2) · · · (2)(1)]

= lnn+ ln(n− 1) + · · ·+ ln 2+ ln 1 =
n∑

k=1

lnk,

and so we have

bn =
1

n
(lnn! −n lnn) =

1

n

(
n∑

k=1

lnk−n lnn

)

=
1

n

n∑
k=1

(lnk− lnn) =
1

n

n∑
k=1

ln
k

n
,

which was what we wanted.

(b) Show that lnbn converges to
∫1
0

ln xdx. Use this to compute limbn.

SOLUTION: Notice that 1
n

∑n
k=1 ln k

n is precisely the right hand approximation to
∫1
0 ln xdx;

since ln x is continuous, we will have

lnbn → ∫1
0

ln xdx = (x ln x− x)
∣∣∣∣1
x=0

= −1.

Hence lnbn → −1 implies bn → e−1.
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