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CONVERGENCE TESTS FOR SERIES
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e The divergence test: If nlgi;o an # 0, then Z an diverges.
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A series that looks like a, = cr™ is called geometric.

(a) If [v] > 1, then it diverges.
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(b) If |r| < 1, then Z cr’t =
n=K
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The integral test: Assume that a, = f(n) forn > M.
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(a) If J f(x) dx converges, then Z an converges.
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(b) If J f(x) dx diverges, then Z an diverges.
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The comparison test:

o0 [e0]
(a) If ap, < by, and Z by converges, then Z an converges.
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(b) If Z an diverges, then Z bn diverges.
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e Limit comparison test: Let {a,} and {by } be sequences with positive terms. Let L = 1i_r)n ;—n.
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(a) If ,then } an converges if and only if }_ b, converges.
(b) If and ) an converges, then ) by, converges.
(c) If and ) by, converges, then ) an converges.



PROBLEMS

(1) Determine the limit of the series or show that the series diverges.
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(8) Z cos(mn)
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(h) Z cos —
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(1) ngz % (Limit Comparison Test)

(Comparison Test)
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(k) ZZ ninn)2 (Integral Test)



(2) Give a counterexample to show that each of the following statements is false.

(a) If the general term an, tends to zero, then }_ an converges.

(b) The Nth partial sum of the infinite series defined by {a} is equal to ay.

(©) fan — L then ) an=L.

n=0

(3) Determine a reduced fraction that is equal to 0.217217217217....
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4) Letb, = 2
n
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(a) Show thatInb, = —~ k; In =

1

(b) Show that Inb,, converges to J Inx dx. Use this to compute lim by,.
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