§11.2 (SERIES)

## **CONVERGENCE TESTS FOR SERIES**

- The divergence test: If  $\lim_{n\to\infty} a_n \neq 0$ , then  $\sum_{n=1}^{\infty} a_n$  diverges.
- A series that looks like  $a_n = cr^n$  is called **geometric.** 
  - (a) If  $|r| \ge 1$ , then it diverges.

(b) If 
$$|\mathbf{r}| < 1$$
, then  $\sum_{n=K}^{\infty} c \mathbf{r}^n = \frac{c \mathbf{r}^K}{1-\mathbf{r}}$ 

- The integral test: Assume that  $a_n = f(n)$  for  $n \ge M$ .
  - (a) If  $\int_{M}^{\infty} f(x) dx$  converges, then  $\sum_{n=0}^{\infty} a_n$  converges.
  - (b) If  $\int_{M}^{\infty} f(x) dx$  diverges, then  $\sum_{n=0}^{\infty} a_n$  diverges.
- The comparison test:
  - (a) If  $a_n \le b_n$ , and  $\sum_{n=0}^{\infty} b_n$  converges, then  $\sum_{n=0}^{\infty} a_n$  converges.
  - (b) If  $\sum_{n=0}^{\infty} a_n$  diverges, then  $\sum_{n=0}^{\infty} b_n$  diverges.
- Limit comparison test: Let  $\{a_n\}$  and  $\{b_n\}$  be sequences with positive terms. Let  $L = \lim_{n \to \infty} \frac{a_n}{b_n}$ .
  - (a) If  $\sum a_n$  converges if and only if  $\sum b_n$  converges.

## PROBLEMS

(1) Determine the limit of the series or show that the series diverges.

(a) 
$$\sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n$$

(b) 
$$\sum_{n=0}^{\infty} e^n$$

(c) 
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
.

$$(d) \sum_{n=2}^{\infty} \frac{1}{n(n-1)}$$

(e) 
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2 + 1}}$$

$$\text{(f) } \sum_{n=0}^{\infty} \frac{9^n + 2^n}{5^n}$$

(g) 
$$\sum_{n=1}^{\infty} \cos(\pi n)$$

$$(h) \sum_{n=1}^{\infty} \cos \frac{1}{n}$$

(i) 
$$\sum_{n=2}^{\infty} \frac{n^2}{n^4 - 1}$$
 (Limit Comparison Test)

(j) 
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + 2^n}$$
 (Comparison Test)

(k) 
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$
 (Integral Test)

- (2) Give a counterexample to show that each of the following statements is false.
  - (a) If the general term  $\alpha_n$  tends to zero, then  $\sum \alpha_n$  converges.

(b) The Nth partial sum of the infinite series defined by  $\{a_n\}$  is equal to  $a_N.$ 

(c) If  $a_n \to L$ , then  $\sum_{n=0}^{\infty} a_n = L$ .

(3) Determine a reduced fraction that is equal to 0.217217217217...

- (4) Let  $b_n = \frac{\sqrt[n]{n!}}{n}$ .
  - (a) Show that  $\ln b_n = \frac{1}{n} \sum_{k=1}^n \ln \frac{k}{n}$ .

(b) Show that  $\ln b_n$  converges to  $\int_0^1 \ln x \, dx$ . Use this to compute  $\lim b_n$ .