§11.4 (ALTERNATING SERIES) NAME: SOLUTIONS
July 25,2018

ABSOLUTE AND CONDITIONAL CONVERGENCE
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e Absolute Convergence: A series Z an converges absolutely if Z lan| converges.
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e Absolute Convergence Theorem: If Z lan| converges, then Z an converges.
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e Conditional Convergence: A series Z an converges conditionally if Z an converges but Z lan]
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diverges.

e Alternating Series Test: If the sequence {by,} is positive and decreasing, and lijn bn = 0, then
n—oo

(o ¢]
S = Z (—=1)™"byn converges. Furthermore, the partial sums satisfy |S — SN | < bn1-
n=1

PROBLEMS
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(1) Show that ) (—1)™""
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SOLUTION: We first show that the series converges, using the Alternating series test. The terms
an = n%ﬂ tend to zero since limn o0 n%ﬂ = 0. Moreover, a, is a decreasing sequence because
f(x) = ﬁ is decreasing for x > 1. Therefore, the alternating series test applies and the series
converges.
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However, to show conditional convergence, we have to show that Z an = Z T diverges. We
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can do this with the limit comparison test, comparing a, to 1/n. We have
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Therefore, because the series Y %°_; L diverges, so does %, =
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(2) Does Z % converges absolutely, conditionally, or not at all?
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SOLUTION: Compute the limit
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It follows that the general term ( nls) Hl of the series doesn’t tend to zero, hence this series diverges by

the divergence test.

(3) Consider the series ngz %‘

(a) Show that the series doesn’t converge absolutely by using the Direct Comparison Test.
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SOLUTION:
(Inn)2

(b) Does it converge conditionally?

o0 o0
_1)n
SOLUTION: Yes; rewrite the series as Z cos(n7) = Z ﬁ and use the Leibniz Test.
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Find a value of N such that the N-th partial sum Sy approximates the series Z
n=1

an error of at most 10~ (calculator needed).

SOLUTION: Using the fact that |S — Sn| < |an41l, we see that it suffices to find an N such that
lan1] <1072,
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lan1] = (NTDO(NET+2)(N+1+3) (NED(N+L3)(N+4) =10

is equivalent to asking
(N+1)(N+3)(N+4) > 10°

Trying with some values of N, we see that the minimum value that makes this true is N = 44.

n—oo n—0

-I n
Prove that lim (1 + n) =eand lim V1+n=e.

SOLUTION: This can be done using L'Hoépital’s rule. We will do the first one; the second is just a
change of variables of the first.
Iny=nln {1+ 1
Y= nl

lim Iny = li_r)n nln (1 + l) .
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Lety = (1 + %)n Then

Then,

This is an indeterminate form, oo - 0. So we manipulate it so we can use L'Hopital’s rule.
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Of course, this is limp 00 Iny. We were looking for limy, ;Y. But we can solve for y — since In(x) is a
continuous function, limy 00 Iny = In (limy 00 y). Hence,

ln<lim y>:1 = Tgijrgoy:e.
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