Absolute and Conditional Convergence

- Absolute Convergence: A series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.
- Absolute Convergence Theorem: If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
- Conditional Convergence: A series $\sum_{n=1}^{\infty} a_{n}$ converges conditionally if $\sum_{n=1}^{\infty} a_{n}$ converges but $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges.
- Alternating Series Test: If the sequence $\left\{b_{n}\right\}$ is positive and decreasing, and $\lim _{n \rightarrow \infty} b_{n}=0$, then $S=\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ converges. Furthermore, the partial sums satisfy $\left|S-S_{N}\right|<b_{N+1}$.

Problems

(1) Show that $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{n^{2}+1}$ converges conditionally.

Solution: We first show that the series converges, using the Alternating series test. The terms $a_{n}=\frac{n}{n^{2}+1}$ tend to zero since $\lim _{n \rightarrow \infty} \frac{n}{n^{2}+1}=0$. Moreover, a_{n} is a decreasing sequence because $f(x)=\frac{x}{x^{2}+1}$ is decreasing for $x \geq 1$. Therefore, the alternating series test applies and the series converges.
However, to show conditional convergence, we have to show that $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$ diverges. We can do this with the limit comparison test, comparing a_{n} to $1 / n$. We have

$$
\lim _{n \rightarrow \infty} \frac{\frac{n}{n^{2}+1}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+1}=1
$$

Therefore, because the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, so does $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$.
(2) Does $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{4}}{n^{3}+1}$ converges absolutely, conditionally, or not at all?

Solution: Compute the limit

$$
\lim _{n \rightarrow \infty} \frac{n^{4}}{n^{3}+1}=\lim _{n \rightarrow \infty} \frac{n}{1+\frac{1}{n^{3}}}=\infty .
$$

It follows that the general term $\frac{(-1)^{n} n^{4}}{n^{3}+1}$ of the series doesn't tend to zero, hence this series diverges by the divergence test.
(3) Consider the series $\sum_{n=2}^{\infty} \frac{\cos n \pi}{(\ln n)^{2}}$.
(a) Show that the series doesn't converge absolutely by using the Direct Comparison Test.

SOLUTION: $\left|\frac{\cos (n \pi)}{(\ln n)^{2}}\right|=\frac{1}{(\ln n)^{2}}>\frac{1}{n}$ for every $n \geq 2$
(b) Does it converge conditionally?

SOLUTION: Yes; rewrite the series as $\sum_{n=2}^{\infty} \frac{\cos (n \pi)}{(\ln n)^{2}}=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{(\ln n)^{2}}$ and use the Leibniz Test.
(4) Find a value of N such that the N-th partial sum S_{N} approximates the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+2)(n+3)}$ with an error of at most 10^{-5} (calculator needed).
Solution: Using the fact that $\left|S-S_{N}\right| \leq\left|a_{N+1}\right|$, we see that it suffices to find an N such that $\left|a_{N+1}\right| \leq 10^{-5}$.

$$
\left|a_{N+1}\right|=\frac{1}{(N+1)(N+1+2)(N+1+3)}=\frac{1}{(N+1)(N+3)(N+4)} \leq 10^{-5}
$$

is equivalent to asking

$$
(N+1)(N+3)(N+4) \geq 10^{5}
$$

Trying with some values of N , we see that the minimum value that makes this true is $\mathrm{N}=44$.
(5) Prove that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$ and $\lim _{n \rightarrow 0} \sqrt[n]{1+n}=e$.

Solution: This can be done using L'Hôpital's rule. We will do the first one; the second is just a change of variables of the first.
Let $y=\left(1+\frac{1}{n}\right)^{n}$. Then

$$
\ln y=n \ln \left(1+\frac{1}{n}\right)
$$

Then,

$$
\lim _{n \rightarrow \infty} \ln y=\lim _{n \rightarrow \infty} n \ln \left(1+\frac{1}{n}\right)
$$

This is an indeterminate form, $\infty \cdot 0$. So we manipulate it so we can use L'Hôpital's rule.

$$
\lim _{n \rightarrow \infty} \ln y=\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{n}\right)}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{1+\frac{1}{n}} \cdot \frac{-1}{n^{2}}}{\frac{--1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}=1
$$

Of course, this is $\lim _{n \rightarrow \infty} \ln y$. We were looking for $\lim _{n \rightarrow \infty} y$. But we can solve for $y-\operatorname{since} \ln (x)$ is a continuous function, $\lim _{\mathfrak{n} \rightarrow \infty} \ln y=\ln \left(\lim _{\mathfrak{n} \rightarrow \infty} y\right)$. Hence,

$$
\ln \left(\lim _{n \rightarrow \infty} y\right)=1 \Longrightarrow \lim _{n \rightarrow \infty} y=e
$$

