
§11.4 (ALTERNATING SERIES) NAME: SOLUTIONS
July 25, 2018

ABSOLUTE AND CONDITIONAL CONVERGENCE

• Absolute Convergence: A series
∞∑

n=1

an converges absolutely if
∞∑

n=1

|an| converges.

• Absolute Convergence Theorem: If
∞∑

n=1

|an| converges, then
∞∑

n=1

an converges.

• Conditional Convergence: A series
∞∑

n=1

an converges conditionally if
∞∑

n=1

an converges but
∞∑

n=1

|an|

diverges.

• Alternating Series Test: If the sequence {bn} is positive and decreasing, and lim
n→∞bn = 0, then

S =

∞∑
n=1

(−1)nbn converges. Furthermore, the partial sums satisfy |S− SN| < bN+1.

PROBLEMS

(1) Show that
∞∑

n=1

(−1)n−1 n

n2 + 1
converges conditionally.

SOLUTION: We first show that the series converges, using the Alternating series test. The terms
an = n

n2+1
tend to zero since limn→∞ n

n2+1
= 0. Moreover, an is a decreasing sequence because

f(x) = x
x2+1

is decreasing for x ≥ 1. Therefore, the alternating series test applies and the series
converges.

However, to show conditional convergence, we have to show that
∞∑

n=1

an =

∞∑
n=1

n

n2 + 1
diverges. We

can do this with the limit comparison test, comparing an to 1/n. We have

lim
n→∞

n
n2+1

1
n

= lim
n→∞ n2

n2 + 1
= 1

Therefore, because the series
∑∞

n=1
1
n diverges, so does

∑∞
n=1

n
n2+1

.

1



(2) Does
∞∑

n=1

(−1)nn4

n3 + 1
converges absolutely, conditionally, or not at all?

SOLUTION: Compute the limit

lim
n→∞ n4

n3 + 1
= lim

n→∞ n

1+ 1
n3

= ∞.

It follows that the general term (−1)nn4

n3+1
of the series doesn’t tend to zero, hence this series diverges by

the divergence test.

(3) Consider the series
∞∑

n=2

cosnπ
(lnn)2

.

(a) Show that the series doesn’t converge absolutely by using the Direct Comparison Test.

SOLUTION:
∣∣∣∣cos(nπ)
(lnn)2

∣∣∣∣ = 1

(lnn)2
>
1

n
for every n ≥ 2

(b) Does it converge conditionally?

SOLUTION: Yes; rewrite the series as
∞∑

n=2

cos(nπ)
(lnn)2

=

∞∑
n=2

(−1)n

(lnn)2
and use the Leibniz Test.
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(4) Find a value of N such that theN-th partial sum SN approximates the series
∞∑

n=1

(−1)n+1

n(n+ 2)(n+ 3)
with

an error of at most 10−5 (calculator needed).

SOLUTION: Using the fact that |S − SN| ≤ |aN+1|, we see that it suffices to find an N such that
|aN+1| ≤ 10−5.

|aN+1| =
1

(N+ 1)(N+ 1+ 2)(N+ 1+ 3)
=

1

(N+ 1)(N+ 3)(N+ 4)
≤ 10−5

is equivalent to asking
(N+ 1)(N+ 3)(N+ 4) ≥ 105

Trying with some values of N, we see that the minimum value that makes this true is N = 44.

(5) Prove that lim
n→∞

(
1+

1

n

)n

= e and lim
n→0

n
√
1+n = e.

SOLUTION: This can be done using L’Hôpital’s rule. We will do the first one; the second is just a
change of variables of the first.

Let y =
(
1+ 1

n

)n
. Then

lny = n ln
(
1+

1

n

)
.

Then,

lim
n→∞ lny = lim

n→∞n ln
(
1+

1

n

)
.

This is an indeterminate form, ∞ · 0. So we manipulate it so we can use L’Hôpital’s rule.

lim
n→∞ lny = lim

n→∞ ln(1+ 1
n )

1
n

= lim
n→∞

1

1+ 1
n

· −1
n2

−1
n2

= lim
n→∞ 1

1+ 1
n

= 1

Of course, this is limn→∞ lny. We were looking for limn→∞ y. But we can solve for y – since ln(x) is a
continuous function, limn→∞ lny = ln (limn→∞ y). Hence,

ln
(

lim
n→∞y

)
= 1 =⇒ lim

n→∞y = e.

3


