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ABSOLUTE AND CONDITIONAL CONVERGENCE
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e Absolute Convergence: A series Z an converges absolutely if Z lan| converges.
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[e.¢] oo
e Absolute Convergence Theorem: If Z lan| converges, then Z an converges.
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e Conditional Convergence: A series Z an converges conditionally if Z an converges but Z lan|
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diverges.

e Alternating Series Test: If the sequence {by,} is positive and decreasing, and lijn bn = 0, then
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S = Z (—=1)™"byn converges. Furthermore, the partial sums satisfy |S — SN | < bn1-
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PROBLEMS

(1) Show that Z (=1 !
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n converges conditionall
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(2) Does & converges absolutely, conditionally, or not at all?
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(3) Consider the series Z
n=2

(a) Show that the series doesn’t converge absolutely by using the Direct Comparison Test.

(b) Does it converge conditionally?
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(4) Find a value of N such that the N-th partial sum Sy approximates the series Z
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an error of at most 10~ (calculator needed).
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(5) Prove that lim (1 + ) =eand lim V1i+n=e.
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