$\S11.4$ (Alternating Series) July 25, 2018

Name: _____

ABSOLUTE AND CONDITIONAL CONVERGENCE

- Absolute Convergence: A series $\sum_{n=1}^{\infty} a_n$ converges absolutely if $\sum_{n=1}^{\infty} |a_n|$ converges.
- Absolute Convergence Theorem: If $\sum_{n=1}^{\infty}|a_n|$ converges, then $\sum_{n=1}^{\infty}a_n$ converges.
- Conditional Convergence: A series $\sum_{n=1}^{\infty} a_n$ converges conditionally if $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} |a_n|$ diverges.
- Alternating Series Test: If the sequence $\{b_n\}$ is positive and decreasing, and $\lim_{n\to\infty}b_n=0$, then $S=\sum_{n=1}^{\infty}(-1)^nb_n$ converges. Furthermore, the partial sums satisfy $|S-S_N|< b_{N+1}$.

PROBLEMS

(1) Show that $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2+1}$ converges conditionally.

(2) Does $\sum_{n=1}^{\infty} \frac{(-1)^n n^4}{n^3 + 1}$ converges absolutely, conditionally, or not at all?

(3) Consider the series $\sum_{n=2}^{\infty} \frac{\cos n\pi}{(\ln n)^2}.$

(a) Show that the series doesn't converge absolutely by using the Direct Comparison Test.

(b) Does it converge conditionally?

(4) Find a value of N such that the N-th partial sum S_N approximates the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+2)(n+3)}$ with an error of at most 10^{-5} (calculator needed).

(5) Prove that
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$
 and $\lim_{n\to0} \sqrt[n]{1+n} = e$.