NAME: **SOLUTIONS**

POWER SERIES

- (1) An infinite series of the form $F(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$ is called a **power series** and c is called the **center**.
- (2) The **radius of convergence** of $F(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$ is a constant R such that F(x) converges absolutely for |x-c| < R and diverges for |x-c| > R. If F(x) converges for all x, then $R = \infty$.
- (3) To determine R, use the ratio test.
- (4) $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$, with radius of convergence $R = \boxed{1}$
- (5) If R > 0, then a power series F(x) is differentiable on (c R, c + R), and

$$F'(x) = \sum_{n=1}^{\infty} n\alpha_n (x-c)^{n-1}.$$

$$\int F(x) \, dx = C + \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-c)^{n+1}.$$

PROBLEMS

(1) Show that all three of the following power series have the same radius of convergence, but different behavior at the endpoints.

(a)
$$\sum_{n=1}^{\infty} \frac{(x-5)^n}{9^n}$$

SOLUTION: Use the ratio test to determine the radius of convergence.

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{|x - 5|^{n+1} 9^n}{|x - 5|^n 9^{n+1}} = \frac{|x - 5|}{9}.$$

So this series converges if $\frac{1}{9}|x-5| < 1$, and has radius of convergence R = 9. But now we need to check the endpoints, which are x = -4 and x = 14.

$$x = 14:$$

$$\sum_{n=1}^{\infty} \frac{(14-5)^n}{9^n} = \sum_{n=1}^{\infty} 1$$
 diverges
$$x = -4:$$

$$\sum_{n=1}^{\infty} \frac{(-4-5)^n}{9^n} = \sum_{n=1}^{\infty} (-1)^n$$
 diverges

1

So the interval of convergence is (-4, 14).

(b)
$$\sum_{n=1}^{\infty} \frac{(x-5)^n}{n9^n}$$

SOLUTION: Use the ratio test to determine the radius of convergence.

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{|x-5|^{n+1} \, n 9^n}{|x-5|^n \, (n+1) 9^{n+1}} = \frac{|x-5|}{9}.$$

So this series converges if $\frac{1}{9}|x-5| < 1$, and has radius of convergence R = 9. But now we need to check the endpoints, which are x = -4 and x = 14.

$$x = 14:$$

$$\sum_{n=1}^{\infty} \frac{(14-5)^n}{n^{9n}} = \sum_{n=1}^{\infty} \frac{1}{n}$$
 diverges
$$x = -4:$$

$$\sum_{n=1}^{\infty} \frac{(-4-5)^n}{9^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 converges

The interval of convergence is [-4, 14).

(c)
$$\sum_{n=1}^{\infty} \frac{(x-5)^n}{n^2 9^n}$$

SOLUTION: Use the ratio test to determine the radius of convergence.

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{|x-5|^{n+1} n^2 9^n}{|x-5|^n (n+1)^2 9^{n+1}} = \frac{|x-5|}{9}.$$

So this series converges if $\frac{1}{9}|x-5| < 1$, and has radius of convergence R = 9. But now we need to check the endpoints, which are x = -4 and x = 14.

$$x = 14: \qquad \sum_{n=1}^{\infty} \frac{(14-5)^n}{n^2 9^n} = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
 converges
$$x = -4: \qquad \sum_{n=1}^{\infty} \frac{(-4-5)^n}{n^2 9^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$
 converges

The interval of convergence is [-4, 14].

(2) Use the geometric series formula to expand the function $\frac{1}{1+3x}$ in a power series with center c=0 and determine radius of convergence.

SOLUTION: The formula for the geometric series implies that

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

for |x| < 1. Replace x by -3x in that formula to get

$$\frac{1}{1+3x} = \sum_{n=0}^{\infty} (-3x)^n = \sum_{n=0}^{\infty} (-1)^n 3^n x^n.$$

This formula is valid for |-3x| < 1, or |x| < 1/3. So the radius of convergence is $R = \frac{1}{3}$.

(3) Find a power series expansion for ln(1+x) and the interval on which this expansion is valid. SOLUTION: We apply integration to the expansion

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 - x^3 + \cdots$$

which is valid for |x| < 1, to see that

$$\ln(1+x) = \int \frac{1}{1+x} \, dx = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

which is also valid for |x| < 1.