Power Series

(1) An infinite series of the form $F(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ is called a power series and c is called the center.
(2) The radius of convergence of $F(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ is a constant R such that $F(x)$ converges absolutely for $|x-c|<R$ and diverges for $|x-c|>R$. If $F(x)$ converges for all x, then $R=\infty$.
(3) To determine R, use the ratio test.
(4) $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$, with radius of convergence $R=1$.
(5) If $R>0$, then a power series $F(x)$ is differentiable on $(c-R, c+R)$, and

$$
\begin{gathered}
F^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}(x-c)^{n-1} \\
\int F(x) d x=C+\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(x-c)^{n+1} .
\end{gathered}
$$

PROBLEMS

(1) Show that all three of the following power series have the same radius of convergence, but different behavior at the endpoints.
(a) $\sum_{n=1}^{\infty} \frac{(x-5)^{n}}{9^{n}}$

SOLUTION: Use the ratio test to determine the radius of convergence.

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x-5|^{n+1} 9^{n}}{|x-5|^{n} 9^{n+1}}=\frac{|x-5|}{9} .
$$

So this series converges if $\frac{1}{9}|x-5|<1$, and has radius of convergence $R=9$.
But now we need to check the endpoints, which are $x=-4$ and $x=14$.

$$
\begin{array}{lll}
x=14: & \sum_{n=1}^{\infty} \frac{(14-5)^{n}}{9^{n}}=\sum_{n=1}^{\infty} 1 & \text { diverges } \\
x=-4: & \sum_{n=1}^{\infty} \frac{(-4-5)^{n}}{9^{n}}=\sum_{n=1}^{\infty}(-1)^{n} & \text { diverges }
\end{array}
$$

So the interval of convergence is $(-4,14)$.
(b) $\sum_{n=1}^{\infty} \frac{(x-5)^{n}}{n 9^{n}}$

SOLUTION: Use the ratio test to determine the radius of convergence.

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x-5|^{n+1} n 9^{n}}{|x-5|^{n}(n+1) 9^{n+1}}=\frac{|x-5|}{9} .
$$

So this series converges if $\frac{1}{9}|x-5|<1$, and has radius of convergence $R=9$.
But now we need to check the endpoints, which are $x=-4$ and $x=14$.

$$
\begin{array}{lll}
x=14: & \sum_{n=1}^{\infty} \frac{(14-5)^{n}}{n 9^{n}}=\sum_{n=1}^{\infty} \frac{1}{n} & \text { diverges } \\
x=-4: & \sum_{n=1}^{\infty} \frac{(-4-5)^{n}}{9^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} & \text { converges }
\end{array}
$$

The interval of convergence is $[-4,14)$.
(c) $\sum_{n=1}^{\infty} \frac{(x-5)^{n}}{n^{2} 9^{n}}$

SOLUTION: Use the ratio test to determine the radius of convergence.

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x-5|^{n+1} n^{2} 9^{n}}{|x-5|^{n}(n+1)^{2} 9^{n+1}}=\frac{|x-5|}{9} .
$$

So this series converges if $\frac{1}{9}|x-5|<1$, and has radius of convergence $R=9$.
But now we need to check the endpoints, which are $x=-4$ and $x=14$.

$$
\begin{array}{lll}
x=14: & \sum_{n=1}^{\infty} \frac{(14-5)^{n}}{n^{2} 9^{n}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}} & \text { converges } \\
x=-4: & \sum_{n=1}^{\infty} \frac{(-4-5)^{n}}{n^{2} 9^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} & \text { converges }
\end{array}
$$

The interval of convergence is $[-4,14]$.
(2) Use the geometric series formula to expand the function $\frac{1}{1+3 \mathrm{x}}$ in a power series with center $\mathrm{c}=0$ and determine radius of convergence.
SOLUTION: The formula for the geometric series implies that

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

for $|x|<1$. Replace x by $-3 x$ in that formula to get

$$
\frac{1}{1+3 x}=\sum_{n=0}^{\infty}(-3 x)^{n}=\sum_{n=0}^{\infty}(-1)^{n} 3^{n} x^{n} .
$$

This formula is valid for $|-3 x|<1$, or $|x|<1 / 3$. So the radius of convergence is $R=\frac{1}{3}$.
(3) Find a power series expansion for $\ln (1+x)$ and the interval on which this expansion is valid.

SOlution: We apply integration to the expansion

$$
\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}=1-x+x^{2}-x^{3}+\cdots
$$

which is valid for $|x|<1$, to see that

$$
\ln (1+x)=\int \frac{1}{1+x} d x=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots
$$

which is also valid for $|x|<1$.

