§11.6 (POWER SERIES)

NAME: \qquad

Power Series

(1) An infinite series of the form $F(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ is called a power series and c is called the center.
(2) The radius of convergence of $F(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ is a constant R such that $F(x)$ converges absolutely for $|x-c|<R$ and diverges for $|x-c|>R$. If $F(x)$ converges for all x, then $R=\infty$.
(3) To determine R , use
(4) $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$, with radius of convergence $R=$ \qquad
(5) If $R>0$, then a power series $F(x)$ is differentiable on ($c-R, c+R$), and

$$
\begin{aligned}
F^{\prime}(x) & =\sum_{n=1}^{\infty} n a_{n}(x-c)^{n-1} . \\
\int F(x) d x & =C+\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(x-c)^{n+1} .
\end{aligned}
$$

Problems

(1) Show that all three of the following power series have the same radius of convergence, but different behavior at the endpoints.
(a) $\sum_{n=1}^{\infty} \frac{(x-5)^{n}}{9^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{(x-5)^{n}}{n 9^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{(x-5)^{n}}{n^{2} 9^{n}}$
(2) Use the geometric series formula to expand the function $\frac{1}{1+3 \mathrm{x}}$ in a power series with center $\mathrm{c}=0$ and determine radius of convergence.
(3) Find a power series expansion for $\ln (1+x)$ and the interval on which this expansion is valid.

