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TAYLOR SERIES

(1) The power series
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is called the Taylor Series for f(x) centered at x = c. If ¢ = 0, this is called a Maclaurin series.

(2) The N-th partial sum
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of the Taylor series T(x) is called the N-th Taylor Polynomial for f(x) centered at x = c.

(3) Taylor’s Theorem. The n-th Taylor polynomial Ty, (x) centered at x = a approximates the function f(x)

with a remainder _—
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Corollary. The n-th Taylor polynomial Ty (x) centered at x = a approximates f(x) with error at most
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where K is a number such that |[f(" 1) (u)| < K forall u € (a, x).

(4) Where functions agree with their Taylor series: Suppose that T(x) is the Taylor series for f(x) centered
at ¢, with radius of convergence R. If there is a number K such that |f (M) (x)| < Kforallx € (c—R,c+R)
for all n, then f(x) = T(x) forall x € (¢ —R,c +R).
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(6) Some Taylor series:
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PROBLEMS

(1) Find the Taylor polynomial T3 (x) for f(x) centered at c = 3if f(3) =1, f'(3) =2, f"/(3) =12, f""(3)
SOLUTION:
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(2) Find the Taylor polynomials T, (x) and T3(x) for f(x) !

= 19 centered ata = 1.
SOLUTION: We need to take a few derivatives, and then plug in a = 1 to each one.
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Then plug these values into the formula for the Taylor polynomial.
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(3) Find n such that [T,,(1.3) — v/1.3] < 10~°, where Ty, (x) is the Taylor polynomial for y/x at a = 1.

SOLUTION: By the error formula, we have that
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So we just need to find n such that
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where K, ; 1 is the maximum value of the (n + 1)-st derivative of f(x) = y/x between 1 and 1.3. Since
f(+1)(x) is the (n + 1)-st derivative of v/x, and this always has x in the denominator for any n > 0,
this maximum will always occur at x = 1. Therefore, in this case,
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So we just need to find n such that
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The hard part is finding a pattern for the n-th derivative of \/x, but that’s not strictly necessary,
although possible. If you keep taking derivatives of y/x and plugging into the formula, you find that
this is valid for .

Alternatively, the general formula for the n-th derivative of \/x is
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Then you can plug this in to the previous formula.
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(4) (a) Use the fact that arctan(x) is an antiderivative of 152 to find a Maclaurin series for arctan(x),
X
and find the interval of convergence.

SOLUTION: Recall that arctan(x) is an antiderivative of (14 x2)~'. We can get a power series
expansion for ;—— by substituting —x? into the geometric series formula:
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This expansion is valid for x| <1, or equivalently, [x| < 1. Now integrate term-by-term:
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We’re not done yet! We need to find the constant of integration. To do this, plug in x = 0, so
A = arctan(0) = 0. Therefore,
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Integrating term-by-term doesn’t change the radius of convergence, so it still converges for [x| < 1.
But we do need to check the endpoints of this interval: x = £1.
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which converges by the alternating series test.

For x = 1, we have the series

For x = —1, notice that (—1)2™+1 = —1, so we have the series
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which again converges by the alternating series test.

Therefore, the interval of convergence is [—1, 1].

b) Use the fact that tan = ]— and your answer to the previous part to find a series that
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converges to 7.

SOLUTION: We have arctan(1/+/3) = 7t/6. Since x = 1/+/3 is inside the radius of convergence,
so we can plug in 1/+/3 into the series from the previous part:
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Thus we have
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(5) Find the interval of convergence of the following power series.
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SOLUTION: Start with the ratio test:
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So the series converges when [x| < 1 and diverges when [x| > 1. We must now check the cases
when [x| = 1 manually: when x = 1 and x = —1, the resulting series converges by limit comparison
to) (1/ n*). Hence the interval of convergence is [—1,1].
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Thus the series converges for [x + 3| < 1/2. Check the endpoints: when x +3 = 1/2 then the

series is
s 21 i 1
3n2n 3n’
=0 n=0

which diverges, and when x 4 3 = —1/2 the series is the alternating version of the above, which
converges. Hence the interval of convergence is [-3 —1/2,-3+1/2) =[-7/2,-5/2).
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SOLUTION. Ratio test:
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(Use L'Hopital’s rule if you are not confident with the limit.) So the series converges when
Ix +4| < 1, that is for x € (—5, —3). Checking the endpoints, we find that when x = —5, we have
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which converges by the Alternating Series Test, and when x = —3 we have
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which converges by limit comparisonto ) 1/ n2. Therefore the interval of convergence is [—5, —3].



(6) Find the Taylor series of the following functions and determine the radius of convergence.

(a) f(x) = sin(2x), centered at x = 0.

SOLUTION:
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Since the formula for sin(x) is valid for all x, the formula for sin(2x) is also valid for all x.

(b) f(x) = e**, centered at x = 0.
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Since the formula for e is valid for all x, so is the formula for e**.

() f(x) = xze"z, centered at x = 0.
SOLUTION:
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Since the formula for xZ is valid for all x, so is the formula for x2 e’
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(d) f(x) = 72 centered at ¢ = —1.

SOLUTION: Rewrite the function as follows:
1 1 —1 1
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Now use the geometric series formula, valid for |x| < 1.
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This formula is now valid for ‘ ’ <1,or[x+1| < . So the radius of convergence is 3

(e) f(x) = (1+x)/3, centered at ¢ = 0.
SOLUTION: Use the binomial series formula with a = %
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The radius of convergence is 1, since the formula is valid for x| < 1.

(f) f(x) = +/x, centered at c = 4.
SOLUTION: First rewrite the function
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Now find the MacLaurin series of 1/T+u by setting a = 1 in the binomial series formula.
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This is valid for [u| < 1. Now replace u by *; x4 to get
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The final answer is:

‘ < Tor [x—4| < 4. So the radius of convergence is 4.
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If you're willing to do a lot of simplifying, you can eventually get to:
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