31 July 2018

July 2018

TAYLOR SERIES

(1) The power series

$$T(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x - c)^n$$

NAME: SOLUTIONS

is called the **Taylor Series** for f(x) centered at x = c. If c = 0, this is called a **Maclaurin series**.

(2) The N-th partial sum

$$T_{N}(x) = \sum_{n=0}^{N} \frac{f^{(n)}(c)}{n!} (x-c)^{n} = f(c) + \frac{f'(c)}{1!} (x-c) + \frac{f''(c)}{2!} (x-c)^{2} + \dots + \frac{f^{(N)}(c)}{N!} (x-c)^{N}$$

of the Taylor series T(x) is called the N-th **Taylor Polynomial** for f(x) centered at x = c.

(3) **Taylor's Theorem.** The n-th Taylor polynomial $T_n(x)$ centered at x = a approximates the function f(x) with a remainder

$$f(x) - T_n(x) = \frac{1}{n!} \int_0^x (x - u)^n f^{(n+1)}(u) du.$$

Corollary. The n-th Taylor polynomial $T_n(x)$ centered at x = a approximates f(x) with error at most

$$|f(x) - T_n(x)| \le K \frac{|x - a|^{n+1}}{(n+1)!},$$

where K is a number such that $|f^{(n+1)}(u)| \le K$ for all $u \in (a, x)$.

(4) Where functions agree with their Taylor series: Suppose that T(x) is the Taylor series for f(x) centered at c, with radius of convergence R. If there is a number K such that $|f^{(n)}(x)| \le K$ for all $x \in (c - R, c + R)$ for all n, then f(x) = T(x) for all $x \in (c - R, c + R)$.

(5)
$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{\infty} {a \choose n} x^n$$
 for $|x| < 1$, where ${a \choose n} = \frac{a(a-1)(a-2)\cdots(a-n+1)}{n!}$

(6) Some Taylor series:

Function	Series	Interval of Convergence
e ^x	$\sum_{n=0}^{\infty} \frac{x^n}{n!}$	$(-\infty,\infty)$
sin(x)	$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$	$(-\infty,\infty)$
$\cos(x)$	$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$	$(-\infty,\infty)$
$\frac{1}{1-x}$	$\sum_{n=0}^{\infty} x^n$	(-1,1)
ln(1+x)	$\sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1}$	(-1,1]

PROBLEMS

(1) Find the Taylor polynomial $T_3(x)$ for f(x) centered at c=3 if f(3)=1, f'(3)=2, f''(3)=12, f'''(3)=3. SOLUTION:

$$\begin{split} T_3(x) &= f(3) + f'(3)(x-3) + \frac{f''(3)}{2!}(x-3)^2 + \frac{f'''(3)}{3!}(x-3)^3 \\ &= 1 + 2(x-3) + \frac{12}{2!}(x-3)^2 + \frac{3}{3!}(x-3)^3 \\ &= 1 + 2(x-3) + 6(x-3)^2 + \frac{1}{2}(x-3)^3 \end{split}$$

(2) Find the Taylor polynomials $T_2(x)$ and $T_3(x)$ for $f(x) = \frac{1}{1+x}$ centered at a = 1. SOLUTION: We need to take a few derivatives, and then plug in a = 1 to each one.

n | n-th derivative
$$f^{(n)}(x)$$
 | $f^{(n)}(a)$
0 | $f(x) = \frac{1}{1+x}$ | $f(1) = 1/2$
1 | $f'(x) = \frac{-1}{(1+x)^2}$ | $f'(1) = -1/4$
2 | $f''(x) = \frac{2}{(1+x)^3}$ | $f'''(1) = 1/4$
3 | $f''''(x) = \frac{-6}{(1+x)^4}$ | $f''''(1) = -3/8$

Then plug these values into the formula for the Taylor polynomial.

$$T_2(x) = \frac{1}{2} - \frac{(x-1)}{4} + \frac{(x-1)^2}{8}$$

$$T_3(x) = \frac{1}{2} - \frac{(x-1)}{4} + \frac{(x-1)^2}{8} - \frac{(x-1)^3}{16}$$

(3) Find n such that $|T_n(1.3) - \sqrt{1.3}| \le 10^{-6}$, where $T_n(x)$ is the Taylor polynomial for \sqrt{x} at $\alpha = 1$. Solution: By the error formula, we have that

$$|T_n(1.3) - \sqrt{1.3}| \le \frac{K_{n+1}(1.3-1)^{n+1}}{(n+1)!}$$

So we just need to find n such that

$$\frac{K_{n+1}(0.3)^{n+1}}{(n+1)!} < 10^{-6},$$

where K_{n+1} is the maximum value of the (n+1)-st derivative of $f(x) = \sqrt{x}$ between 1 and 1.3. Since $f^{(n+1)}(x)$ is the (n+1)-st derivative of \sqrt{x} , and this always has x in the denominator for any $n \ge 0$, this maximum will always occur at x = 1. Therefore, in this case,

$$K_{n+1} = |f^{(n+1)}(1)|.$$

So we just need to find n such that

$$\frac{|f^{(n+1)}(1)|(0.3)^{n+1}}{(n+1)!} < 10^{-6}.$$

The hard part is finding a pattern for the n-th derivative of \sqrt{x} , but that's not strictly necessary, although possible. If you keep taking derivatives of \sqrt{x} and plugging into the formula, you find that this is valid for $n \ge 7$.

Alternatively, the general formula for the n-th derivative of \sqrt{x} is

$$f^{(n)}(x) = (-1)^{n+1} \frac{1 \cdot 3 \cdot 5 \cdots (2n-3)}{2^n} x^{\frac{-(2n-1)}{2}}$$

Then you can plug this in to the previous formula.

(4) (a) Use the fact that arctan(x) is an antiderivative of $\frac{1}{1+x^2}$ to find a Maclaurin series for arctan(x), and find the interval of convergence.

SOLUTION: Recall that $\arctan(x)$ is an antiderivative of $(1+x^2)^{-1}$. We can get a power series expansion for $\frac{1}{1+x^2}$ by substituting $-x^2$ into the geometric series formula:

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \dots$$

This expansion is valid for $|x^2| < 1$, or equivalently, |x| < 1. Now integrate term-by-term:

$$\tan^{-1} x = \int \frac{dx}{1+x^2} = \int \left(1-x^2+x^4-x^6+\cdots\right) dx = A+x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots$$

We're not done yet! We need to find the constant of integration. To do this, plug in x = 0, so $A = \arctan(0) = 0$. Therefore,

$$\arctan(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}.$$

Integrating term-by-term doesn't change the radius of convergence, so it still converges for |x| < 1. But we do need to check the endpoints of this interval: $x = \pm 1$.

For x = 1, we have the series

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1},$$

which converges by the alternating series test.

For x = -1, notice that $(-1)^{2n+1} = -1$, so we have the series

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2n+1},$$

which again converges by the alternating series test.

Therefore, the interval of convergence is [-1, 1].

(b) Use the fact that $\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$ and your answer to the previous part to find a series that converges to π .

SOLUTION: We have $\arctan(1/\sqrt{3}) = \pi/6$. Since $x = 1/\sqrt{3}$ is inside the radius of convergence, so we can plug in $1/\sqrt{3}$ into the series from the previous part:

$$\frac{\pi}{6} = \arctan\left(\frac{1}{\sqrt{3}}\right)$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{\left(1/\sqrt{3}\right)^{2n+1}}{2n+1}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1/2}(2n+1)}.$$

Thus we have

$$\pi = \sum_{n=0}^{\infty} \frac{6(-1)^n}{3^{n+1/2}(2n+1)}.$$

(5) Find the interval of convergence of the following power series.

(a)
$$\sum_{n=0}^{\infty} \frac{x^n}{n^4 + 2}$$

SOLUTION: Start with the ratio test:

$$\left| \frac{x^{n+1}}{(n+1)^4 + 2} \frac{n^4 + 2}{x^n} \right| = \left| \frac{n^4 + 2}{(n+1)^4 + 2} x \right| \to |x|$$

So the series converges when |x| < 1 and diverges when |x| > 1. We must now check the cases when |x| = 1 manually: when x = 1 and x = -1, the resulting series converges by limit comparison to $\sum (1/n^4)$. Hence the interval of convergence is [-1, 1].

(b)
$$\sum_{n=0}^{\infty} \frac{2^n}{3n} (x+3)^n$$

SOLUTION: Ratio test:

$$\left|\frac{2^{n+1}(x+3)^{n+1}}{3(n+1)}\frac{3n}{2^n(x+3)^n}\right| = \left|\frac{3n}{3(n+1)}\cdot 2(x+3)\right| \to |2(x+3)|.$$

Thus the series converges for |x + 3| < 1/2. Check the endpoints: when x + 3 = 1/2 then the series is

$$\sum_{n=0}^{\infty} \frac{2^n}{3n} \frac{1}{2^n} = \sum_{n=0}^{\infty} \frac{1}{3n},$$

which diverges, and when x + 3 = -1/2 the series is the alternating version of the above, which converges. Hence the interval of convergence is [-3 - 1/2, -3 + 1/2) = [-7/2, -5/2].

(c)
$$\sum_{n=0}^{\infty} \frac{(x+4)^n}{(n \ln n)^2}$$

SOLUTION: Ratio test:

$$\left| \frac{(x+4)^{n+1}}{((n+1)\ln(n+1))^2} \frac{(n\ln n)^2}{(x+4)^n} \right| = \left| \left(\frac{n}{n+1} \frac{\ln n}{\ln(n+1)} \right)^2 (x+4) \right| \to |x+4|.$$

(Use L'Hôpital's rule if you are not confident with the limit.) So the series converges when |x+4| < 1, that is for $x \in (-5, -3)$. Checking the endpoints, we find that when x = -5, we have

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(n \ln n)^2},$$

which converges by the Alternating Series Test, and when x = -3 we have

$$\sum_{n=0}^{\infty} \frac{1}{(n \ln n)^2},$$

which converges by limit comparison to $\sum 1/n^2$. Therefore the interval of convergence is [-5, -3].

5

- (6) Find the Taylor series of the following functions and determine the radius of convergence.
 - (a) $f(x) = \sin(2x)$, centered at x = 0. Solution:

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\sin(2x) = \sum_{n=0}^{\infty} (-1)^n \frac{(2x)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n+1} x^{2n+1}}{(2n+1)!}$$

Since the formula for sin(x) is valid for all x, the formula for sin(2x) is also valid for all x.

(b) $f(x) = e^{4x}$, centered at x = 0. SOLUTION:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$e^{4x} = \sum_{n=0}^{\infty} \frac{(4x)^{n}}{n!} = \sum_{n=0}^{\infty} \frac{4^{n}x^{n}}{n!}$$

Since the formula for e^x is valid for all x, so is the formula for e^{4x} .

(c) $f(x) = x^2 e^{x^2}$, centered at x = 0. SOLUTION:

$$\begin{split} e^{x^2} &= \sum_{n=0}^{\infty} \frac{(x^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{x^{2n+2}}{n!} \\ x^2 e^{x^2} &= x^2 \left(\sum_{n=0}^{\infty} \frac{x^{2n+2}}{n!} \right) = \sum_{n=0}^{\infty} \frac{x^{2n+2}}{n!} \end{split}$$

Since the formula for x^2 is valid for all x, so is the formula for $x^2e^{x^2}$.

(d) $f(x) = \frac{1}{3x-2}$, centered at c = -1.

SOLUTION: Rewrite the function as follows:

$$\frac{1}{3x-2} = \frac{1}{-5+3(x+1)} = \frac{-1}{5} \frac{1}{1 - \frac{3(x+1)}{5}}$$

Now use the geometric series formula, valid for |x| < 1.

$$\frac{1}{3x-2} = -\frac{1}{5} \sum_{n=0}^{\infty} \left(\frac{3(x+1)}{5} \right)^n = -\frac{1}{5} \sum_{n=0}^{\infty} 3^n 5^n (x+1)^n = -\sum_{n=0}^{\infty} \frac{3^n}{5^{n+1}} (x+1)^n$$

This formula is now valid for $\left|\frac{3(x+1)}{5}\right| < 1$, or $|x+1| < \frac{5}{3}$. So the radius of convergence is $\frac{5}{3}$.

(e) $f(x) = (1+x)^{1/3}$, centered at c = 0.

SOLUTION: Use the binomial series formula with $a = \frac{1}{3}$.

$$(1+x)^{\frac{1}{3}} = 1 + \sum_{n=1}^{\infty} {1 \choose 3 \choose n} x^n$$

The radius of convergence is 1, since the formula is valid for |x| < 1.

(f) $f(x) = \sqrt{x}$, centered at c = 4.

SOLUTION: First rewrite the function

$$\sqrt{x} = \sqrt{4 + (x - 4)} = \sqrt{4\left(1 + \frac{x - 4}{4}\right)} = 2\sqrt{1 + \frac{x - 4}{4}}$$

Now find the MacLaurin series of $\sqrt{1+u}$ by setting $a=\frac{1}{2}$ in the binomial series formula.

$$(1+u)^{\frac{1}{2}} = \sqrt{1+u} = 1 + \sum_{n=1}^{\infty} {1 \choose n} u^n.$$

This is valid for |u| < 1. Now replace u by $\frac{x-4}{4}$ to get

$$\sqrt{1 + \frac{x - 4}{4}} = 1 + \sum_{n = 1}^{\infty} {1 \choose n} \left(\frac{x - 4}{4}\right)^n = 1 + \sum_{n = 1}^{\infty} {1 \choose n} \frac{1}{4^n} (x - 4)^n$$

This is valid for $\left|\frac{x-4}{4}\right| < 1$ or |x-4| < 4. So the radius of convergence is 4.

The final answer is:

$$\sqrt{x} = 2 + \sum_{n=1}^{\infty} {1 \choose 2 \choose n} \frac{2}{4^n} (x-4)^n$$

If you're willing to do a lot of simplifying, you can eventually get to:

$$\sqrt{x} = 2 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1} n(2n-2)!}{2^{4n-2} (n!)^2} (x-4)^n$$

7