TAylor Series

(1) The power series

$$
T(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

is called the Taylor Series for $f(x)$ centered at $x=c$. If $c=0$, this is called a Maclaurin series.
(2) The N-th partial sum

$$
T_{N}(x)=\sum_{n=0}^{N} \frac{f^{(n)}(c)}{n!}(x-c)^{n}=f(c)+\frac{f^{\prime}(c)}{1!}(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(N)}(c)}{N!}(x-c)^{N}
$$

of the Taylor series $\mathrm{T}(\mathrm{x})$ is called the N -th Taylor Polynomial for $\mathrm{f}(\mathrm{x})$ centered at $\mathrm{x}=\mathrm{c}$.
(3) Taylor's Theorem. The n-th Taylor polynomial $T_{n}(x)$ centered at $x=a$ approximates the function $f(x)$ with a remainder

$$
f(x)-T_{n}(x)=\frac{1}{n!} \int_{a}^{x}(x-u)^{n} f^{(n+1)}(u) d u .
$$

Corollary. The n-th Taylor polynomial $T_{n}(x)$ centered at $x=a$ approximates $f(x)$ with error at most

$$
\left|f(x)-T_{n}(x)\right| \leq K \frac{|x-a|^{n+1}}{(n+1)!},
$$

where K is a number such that $\left|f^{(n+1)}(u)\right| \leq K$ for all $u \in(a, x)$.
(4) Where functions agree with their Taylor series: Suppose that $T(x)$ is the Taylor series for $f(x)$ centered at c, with radius of convergence R. If there is a number K such that $\left|f^{(n)}(x)\right| \leq K$ for all $x \in(c-R, c+R)$ for all n, then $f(x)=T(x)$ for all $x \in(c-R, c+R)$.
(5) $(1+x)^{a}=1+\sum_{n=1}^{\infty}\binom{a}{n} x^{n}$ for $|x|<1$, where $\binom{a}{n}=\frac{a(a-1)(a-2) \cdots(a-n+1)}{n!}$
(6) Some Taylor series:

Function	Series	Interval of Conve
e^{x}	$\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$	$(-\infty, \infty)$
$\sin (x)$	$\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$	$(-\infty, \infty)$
$\cos (x)$	$\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$	$(-\infty, \infty)$
$\frac{1}{1-x}$	$\sum_{n=0}^{\infty} x^{n}$	$(-1,1)$
$\ln (1+x)$	$\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1}$	$(-1,1]$

Problems

(1) Find the Taylor polynomial $T_{3}(x)$ for $f(x)$ centered at $c=3$ if $f(3)=1, f^{\prime}(3)=2, f^{\prime \prime}(3)=12, f^{\prime \prime \prime}(3)=3$. Solution:

$$
\begin{aligned}
T_{3}(x) & =f(3)+f^{\prime}(3)(x-3)+\frac{f^{\prime \prime}(3)}{2!}(x-3)^{2}+\frac{f^{\prime \prime \prime}(3)}{3!}(x-3)^{3} \\
& =1+2(x-3)+\frac{12}{2!}(x-3)^{2}+\frac{3}{3!}(x-3)^{3} \\
& =1+2(x-3)+6(x-3)^{2}+\frac{1}{2}(x-3)^{3}
\end{aligned}
$$

(2) Find the Taylor polynomials $T_{2}(x)$ and $T_{3}(x)$ for $f(x)=\frac{1}{1+x}$ centered at $a=1$.

Solution: We need to take a few derivatives, and then plug in $a=1$ to each one.

n	n-th derivative $f^{(n)}(x)$	$f^{(n)}(a)$
0	$f(x)=\frac{1}{1+x}$	$f(1)=1 / 2$
1	$f^{\prime}(x)=\frac{-1}{(1+x)^{2}}$	$f^{\prime}(1)=-1 / 4$
2	$f^{\prime \prime}(x)=\frac{2}{(1+x)^{3}}$	$f^{\prime \prime}(1)=1 / 4$
3	$f^{\prime \prime \prime}(x)=\frac{-6}{(1+x)^{4}}$	$f^{\prime \prime \prime}(1)=-3 / 8$

Then plug these values into the formula for the Taylor polynomial.

$$
\begin{gathered}
T_{2}(x)=\frac{1}{2}-\frac{(x-1)}{4}+\frac{(x-1)^{2}}{8} \\
T_{3}(x)=\frac{1}{2}-\frac{(x-1)}{4}+\frac{(x-1)^{2}}{8}-\frac{(x-1)^{3}}{16}
\end{gathered}
$$

(3) Find n such that $\left|T_{n}(1.3)-\sqrt{1.3}\right| \leq 10^{-6}$, where $T_{n}(x)$ is the Taylor polynomial for \sqrt{x} at $a=1$.

SOLUTION: By the error formula, we have that

$$
\left|T_{n}(1.3)-\sqrt{1.3}\right| \leq \frac{K_{n+1}(1.3-1)^{n+1}}{(n+1)!}
$$

So we just need to find n such that

$$
\frac{K_{n+1}(0.3)^{n+1}}{(n+1)!}<10^{-6}
$$

where K_{n+1} is the maximum value of the $(n+1)$-st derivative of $f(x)=\sqrt{x}$ between 1 and 1.3. Since $f^{(n+1)}(x)$ is the $(n+1)$-st derivative of \sqrt{x}, and this always has x in the denominator for any $n \geq 0$, this maximum will always occur at $x=1$. Therefore, in this case,

$$
K_{n+1}=\left|f^{(n+1)}(1)\right|
$$

So we just need to find n such that

$$
\frac{\left|f^{(n+1)}(1)\right|(0.3)^{n+1}}{(n+1)!}<10^{-6}
$$

The hard part is finding a pattern for the n-th derivative of \sqrt{x}, but that's not strictly necessary, although possible. If you keep taking derivatives of \sqrt{x} and plugging into the formula, you find that this is valid for $n \geq 7$.
Alternatively, the general formula for the n-th derivative of \sqrt{x} is

$$
f^{(n)}(x)=(-1)^{n+1} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-3)}{2^{n}} x^{\frac{-(2 n-1)}{2}}
$$

Then you can plug this in to the previous formula.
(4) (a) Use the fact that $\arctan (x)$ is an antiderivative of $\frac{1}{1+x^{2}}$ to find a Maclaurin series for $\arctan (x)$, and find the interval of convergence.
SOLUTION: Recall that $\arctan (x)$ is an antiderivative of $\left(1+x^{2}\right)^{-1}$. We can get a power series expansion for $\frac{1}{1+x^{2}}$ by substituting $-x^{2}$ into the geometric series formula:

$$
\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\ldots
$$

This expansion is valid for $\left|x^{2}\right|<1$, or equivalently, $|x|<1$. Now integrate term-by-term:

$$
\tan ^{-1} x=\int \frac{d x}{1+x^{2}}=\int\left(1-x^{2}+x^{4}-x^{6}+\cdots\right) d x=A+x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots
$$

We're not done yet! We need to find the constant of integration. To do this, plug in $x=0$, so $A=\arctan (0)=0$. Therefore,

$$
\arctan (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}
$$

Integrating term-by-term doesn't change the radius of convergence, so it still converges for $|x|<1$. But we do need to check the endpoints of this interval: $x= \pm 1$.
For $x=1$, we have the series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}
$$

which converges by the alternating series test.
For $x=-1$, notice that $(-1)^{2 n+1}=-1$, so we have the series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2 n+1}
$$

which again converges by the alternating series test.
Therefore, the interval of convergence is $[-1,1]$.
(b) Use the fact that $\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}$ and your answer to the previous part to find a series that converges to π.
SOLUTION: We have $\arctan (1 / \sqrt{3})=\pi / 6$. Since $x=1 / \sqrt{3}$ is inside the radius of convergence, so we can plug in $1 / \sqrt{3}$ into the series from the previous part:

$$
\begin{aligned}
\frac{\pi}{6} & =\arctan \left(\frac{1}{\sqrt{3}}\right) \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{(1 / \sqrt{3})^{2 n+1}}{2 n+1} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n+1 / 2}(2 n+1)}
\end{aligned}
$$

Thus we have

$$
\pi=\sum_{n=0}^{\infty} \frac{6(-1)^{n}}{3^{n+1 / 2}(2 n+1)}
$$

(5) Find the interval of convergence of the following power series.
(a) $\sum_{n=0}^{\infty} \frac{x^{n}}{n^{4}+2}$

SOLUTION: Start with the ratio test:

$$
\left|\frac{x^{n+1}}{(n+1)^{4}+2} \frac{n^{4}+2}{x^{n}}\right|=\left|\frac{n^{4}+2}{(n+1)^{4}+2} x\right| \rightarrow|x|
$$

So the series converges when $|x|<1$ and diverges when $|x|>1$. We must now check the cases when $|x|=1$ manually: when $x=1$ and $x=-1$, the resulting series converges by limit comparison to $\sum\left(1 / \mathrm{n}^{4}\right)$. Hence the interval of convergence is $[-1,1]$.
(b) $\sum_{n=0}^{\infty} \frac{2^{n}}{3 n}(x+3)^{n}$

SOLUTION: Ratio test:

$$
\left|\frac{2^{n+1}(x+3)^{n+1}}{3(n+1)} \frac{3 n}{2^{n}(x+3)^{n}}\right|=\left|\frac{3 n}{3(n+1)} \cdot 2(x+3)\right| \rightarrow|2(x+3)| .
$$

Thus the series converges for $|x+3|<1 / 2$. Check the endpoints: when $x+3=1 / 2$ then the series is

$$
\sum_{n=0}^{\infty} \frac{2^{n}}{3 n} \frac{1}{2^{n}}=\sum_{n=0}^{\infty} \frac{1}{3 n}
$$

which diverges, and when $x+3=-1 / 2$ the series is the alternating version of the above, which converges. Hence the interval of convergence is $[-3-1 / 2,-3+1 / 2)=[-7 / 2,-5 / 2)$.
(c) $\sum_{n=0}^{\infty} \frac{(x+4)^{n}}{(n \ln n)^{2}}$

Solution: Ratio test:

$$
\left|\frac{(x+4)^{n+1}}{((n+1) \ln (n+1))^{2}} \frac{(n \ln n)^{2}}{(x+4)^{n}}\right|=\left|\left(\frac{n}{n+1} \frac{\ln n}{\ln (n+1)}\right)^{2}(x+4)\right| \rightarrow|x+4| .
$$

(Use L'Hôpital's rule if you are not confident with the limit.) So the series converges when $|x+4|<1$, that is for $x \in(-5,-3)$. Checking the endpoints, we find that when $x=-5$, we have

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n \ln n)^{2}},
$$

which converges by the Alternating Series Test, and when $x=-3$ we have

$$
\sum_{n=0}^{\infty} \frac{1}{(n \ln n)^{2}}
$$

which converges by limit comparison to $\Sigma 1 / n^{2}$. Therefore the interval of convergence is $[-5,-3]$.
(6) Find the Taylor series of the following functions and determine the radius of convergence.
(a) $f(x)=\sin (2 x)$, centered at $x=0$.

Solution:

$$
\begin{aligned}
& \sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
& \sin (2 x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 x)^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n+1} x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

Since the formula for $\sin (x)$ is valid for all x, the formula for $\sin (2 x)$ is also valid for all x.
(b) $f(x)=e^{4 x}$, centered at $x=0$.

SOlution:

$$
\begin{aligned}
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
e^{4 x} & =\sum_{n=0}^{\infty} \frac{(4 x)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{4^{n} x^{n}}{n!}
\end{aligned}
$$

Since the formula for e^{x} is valid for all x, so is the formula for $e^{4 x}$.
(c) $f(x)=x^{2} e^{x^{2}}$, centered at $x=0$.

Solution:

$$
\begin{aligned}
e^{x^{2}} & =\sum_{n=0}^{\infty} \frac{\left(x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{x^{2 n+2}}{n!} \\
x^{2} e^{x^{2}} & =x^{2}\left(\sum_{n=0}^{\infty} \frac{x^{2 n+2}}{n!}\right)=\sum_{n=0}^{\infty} \frac{x^{2 n+2}}{n!}
\end{aligned}
$$

Since the formula for x^{2} is valid for all x, so is the formula for $x^{2} e^{x^{2}}$.
(d) $f(x)=\frac{1}{3 x-2}$, centered at $\mathrm{c}=-1$.

Solution: Rewrite the function as follows:

$$
\frac{1}{3 x-2}=\frac{1}{-5+3(x+1)}=\frac{-1}{5} \frac{1}{1-\frac{3(x+1)}{5}}
$$

Now use the geometric series formula, valid for $|x|<1$.

$$
\frac{1}{3 x-2}=-\frac{1}{5} \sum_{n=0}^{\infty}\left(\frac{3(x+1)}{5}\right)^{n}=-\frac{1}{5} \sum_{n=0}^{\infty} 3^{n} 5^{n}(x+1)^{n}=-\sum_{n=0}^{\infty} \frac{3^{n}}{5^{n+1}}(x+1)^{n}
$$

This formula is now valid for $\left|\frac{3(x+1)}{5}\right|<1$, or $|x+1|<\frac{5}{3}$. So the radius of convergence is $\frac{5}{3}$.
(e) $f(x)=(1+x)^{1 / 3}$, centered at $c=0$.

SOLUTION: Use the binomial series formula with $\mathrm{a}=\frac{1}{3}$.

$$
(1+x)^{\frac{1}{3}}=1+\sum_{n=1}^{\infty}\binom{\frac{1}{3}}{n} x^{n}
$$

The radius of convergence is 1 , since the formula is valid for $|x|<1$.
(f) $f(x)=\sqrt{x}$, centered at $c=4$.

SOLUTION: First rewrite the function

$$
\sqrt{x}=\sqrt{4+(x-4)}=\sqrt{4\left(1+\frac{x-4}{4}\right)}=2 \sqrt{1+\frac{x-4}{4}}
$$

Now find the MacLaurin series of $\sqrt{1+\mathfrak{u}}$ by setting $a=\frac{1}{2}$ in the binomial series formula.

$$
(1+u)^{\frac{1}{2}}=\sqrt{1+u}=1+\sum_{n=1}^{\infty}\binom{\frac{1}{2}}{n} u^{n} .
$$

This is valid for $|\mathfrak{u}|<1$. Now replace u by $\frac{x-4}{4}$ to get

$$
\sqrt{1+\frac{x-4}{4}}=1+\sum_{n=1}^{\infty}\binom{\frac{1}{2}}{n}\left(\frac{x-4}{4}\right)^{n}=1+\sum_{n=1}^{\infty}\binom{\frac{1}{2}}{n} \frac{1}{4^{n}}(x-4)^{n}
$$

This is valid for $\left|\frac{x-4}{4}\right|<1$ or $|x-4|<4$. So the radius of convergence is 4 .
The final answer is:

$$
\sqrt{x}=2+\sum_{n=1}^{\infty}\binom{\frac{1}{2}}{n} \frac{2}{4^{n}}(x-4)^{n}
$$

If you're willing to do a lot of simplifying, you can eventually get to:

$$
\sqrt{x}=2+\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n(2 n-2)!}{2^{4 n-2}(n!)^{2}}(x-4)^{n}
$$

