
§11.7 (TAYLOR SERIES) NAME: SOLUTIONS
31 July 2018

TAYLOR SERIES

(1) The power series

T(x) =

∞∑
n=0

f(n)(c)

n!
(x− c)n

is called the Taylor Series for f(x) centered at x = c. If c = 0, this is called a Maclaurin series.

(2) The N-th partial sum

TN(x) =

N∑
n=0

f(n)(c)

n!
(x− c)n = f(c) +

f ′(c)

1!
(x− c) +

f ′′(c)

2!
(x− c)2 + · · ·+ f(N)(c)

N!
(x− c)N

of the Taylor series T(x) is called the N-th Taylor Polynomial for f(x) centered at x = c.

(3) Taylor’s Theorem. The n-th Taylor polynomial Tn(x) centered at x = a approximates the function f(x)
with a remainder

f(x) − Tn(x) =
1

n!

∫x
a
(x− u)nf(n+1)(u)du.

Corollary. The n-th Taylor polynomial Tn(x) centered at x = a approximates f(x) with error at most

|f(x) − Tn(x)| ≤ K
|x− a|n+1

(n+ 1)!
,

where K is a number such that |f(n+1)(u)| ≤ K for all u ∈ (a, x).

(4) Where functions agree with their Taylor series: Suppose that T(x) is the Taylor series for f(x) centered
at c, with radius of convergence R. If there is a number K such that |f(n)(x)| ≤ K for all x ∈ (c−R, c+R)
for all n, then f(x) = T(x) for all x ∈ (c− R, c+ R).

(5) (1+ x)a = 1+

∞∑
n=1

(
a

n

)
xn for |x| < 1, where

(
a

n

)
=
a(a− 1)(a− 2) · · · (a−n+ 1)

n!

(6) Some Taylor series:

Function Series Interval of Convergence

ex
∞∑

n=0

xn

n!
(−∞,∞)

sin(x)
∞∑

n=0

(−1)nx2n+1

(2n+ 1)!
(−∞,∞)

cos(x)
∞∑

n=0

(−1)nx2n

(2n)!
(−∞,∞)

1

1− x

∞∑
n=0

xn (−1, 1)

ln(1+ x)
∞∑

n=0

(−1)nxn+1

n+ 1
(−1, 1]
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PROBLEMS

(1) Find the Taylor polynomial T3(x) for f(x) centered at c = 3 if f(3) = 1, f ′(3) = 2, f ′′(3) = 12, f ′′′(3) = 3.

SOLUTION:

T3(x) = f(3) + f
′(3)(x− 3) +

f ′′(3)

2!
(x− 3)2 +

f ′′′(3)

3!
(x− 3)3

= 1+ 2(x− 3) +
12

2!
(x− 3)2 +

3

3!
(x− 3)3

= 1+ 2(x− 3) + 6(x− 3)2 +
1

2
(x− 3)3

(2) Find the Taylor polynomials T2(x) and T3(x) for f(x) = 1
1+x centered at a = 1.

SOLUTION: We need to take a few derivatives, and then plug in a = 1 to each one.

n n-th derivative f(n)(x) f(n)(a)

0 f(x) =
1

1+ x
f(1) = 1/2

1 f ′(x) =
−1

(1+ x)2
f ′(1) = −1/4

2 f ′′(x) =
2

(1+ x)3
f ′′(1) = 1/4

3 f ′′′(x) =
−6

(1+ x)4
f ′′′(1) = −3/8

Then plug these values into the formula for the Taylor polynomial.

T2(x) =
1

2
−

(x− 1)

4
+

(x− 1)2

8

T3(x) =
1

2
−

(x− 1)

4
+

(x− 1)2

8
−

(x− 1)3

16
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(3) Find n such that |Tn(1.3) −
√
1.3| ≤ 10−6, where Tn(x) is the Taylor polynomial for

√
x at a = 1.

SOLUTION: By the error formula, we have that

|Tn(1.3) −
√
1.3| ≤ Kn+1(1.3− 1)n+1

(n+ 1)!

So we just need to find n such that

Kn+1(0.3)n+1

(n+ 1)!
< 10−6,

where Kn+1 is the maximum value of the (n+ 1)-st derivative of f(x) =
√
x between 1 and 1.3. Since

f(n+1)(x) is the (n+ 1)-st derivative of
√
x, and this always has x in the denominator for any n ≥ 0,

this maximum will always occur at x = 1. Therefore, in this case,

Kn+1 = |f(n+1)(1)|.

So we just need to find n such that

|f(n+1)(1)|(0.3)n+1

(n+ 1)!
< 10−6.

The hard part is finding a pattern for the n-th derivative of
√
x, but that’s not strictly necessary,

although possible. If you keep taking derivatives of
√
x and plugging into the formula, you find that

this is valid for n ≥ 7 .

Alternatively, the general formula for the n-th derivative of
√
x is

f(n)(x) = (−1)n+1 1 · 3 · 5 · · · (2n− 3)

2n
x

−(2n−1)
2

Then you can plug this in to the previous formula.
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(4) (a) Use the fact that arctan(x) is an antiderivative of
1

1+ x2
to find a Maclaurin series for arctan(x),

and find the interval of convergence.
SOLUTION: Recall that arctan(x) is an antiderivative of (1+ x2)−1. We can get a power series
expansion for 1

1+x2 by substituting −x2 into the geometric series formula:

1

1+ x2
= 1− x2 + x4 − x6 + . . .

This expansion is valid for |x2| < 1, or equivalently, |x| < 1. Now integrate term-by-term:

tan−1 x =

∫
dx

1+ x2
=

∫ (
1− x2 + x4 − x6 + · · ·

)
dx = A+ x−

x3

3
+
x5

5
−
x7

7
+ · · ·

We’re not done yet! We need to find the constant of integration. To do this, plug in x = 0, so
A = arctan(0) = 0. Therefore,

arctan(x) =
∞∑

n=0

(−1)nx2n+1

2n+ 1
.

Integrating term-by-term doesn’t change the radius of convergence, so it still converges for |x| < 1.
But we do need to check the endpoints of this interval: x = ±1.
For x = 1, we have the series ∞∑

n=0

(−1)n

2n+ 1
,

which converges by the alternating series test.
For x = −1, notice that (−1)2n+1 = −1, so we have the series

∞∑
n=0

(−1)n+1

2n+ 1
,

which again converges by the alternating series test.
Therefore, the interval of convergence is [−1, 1].

(b) Use the fact that tan
(π
6

)
=

1√
3

and your answer to the previous part to find a series that

converges to π.
SOLUTION: We have arctan(1/

√
3) = π/6. Since x = 1/

√
3 is inside the radius of convergence,

so we can plug in 1/
√
3 into the series from the previous part:

π

6
= arctan

(
1√
3

)

=

∞∑
n=0

(−1)n

(
1/
√
3
)2n+1

2n+ 1

=

∞∑
n=0

(−1)n

3n+1/2(2n+ 1)
.

Thus we have

π =

∞∑
n=0

6 (−1)n

3n+1/2(2n+ 1)
.
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(5) Find the interval of convergence of the following power series.

(a)
∞∑

n=0

xn

n4 + 2

SOLUTION: Start with the ratio test:∣∣∣∣ xn+1

(n+ 1)4 + 2

n4 + 2

xn

∣∣∣∣ = ∣∣∣∣ n4 + 2

(n+ 1)4 + 2
x

∣∣∣∣→ |x|

So the series converges when |x| < 1 and diverges when |x| > 1. We must now check the cases
when |x| = 1manually: when x = 1 and x = −1, the resulting series converges by limit comparison
to

∑
(1/n4). Hence the interval of convergence is [−1, 1].

(b)
∞∑

n=0

2n

3n
(x+ 3)n

SOLUTION: Ratio test:∣∣∣∣2n+1(x+ 3)n+1

3(n+ 1)

3n

2n(x+ 3)n

∣∣∣∣ = ∣∣∣∣ 3n

3(n+ 1)
· 2(x+ 3)

∣∣∣∣→ |2(x+ 3)|.

Thus the series converges for |x+ 3| < 1/2. Check the endpoints: when x+ 3 = 1/2 then the
series is ∞∑

n=0

2n

3n

1

2n
=

∞∑
n=0

1

3n
,

which diverges, and when x+ 3 = −1/2 the series is the alternating version of the above, which
converges. Hence the interval of convergence is [−3− 1/2,−3+ 1/2) = [−7/2,−5/2).

(c)
∞∑

n=0

(x+ 4)n

(n lnn)2

SOLUTION: Ratio test:∣∣∣∣ (x+ 4)n+1

((n+ 1) ln(n+ 1))2
(n lnn)2

(x+ 4)n

∣∣∣∣ =
∣∣∣∣∣
(

n

n+ 1

lnn
ln(n+ 1)

)2

(x+ 4)

∣∣∣∣∣→ |x+ 4|.

(Use L’Hôpital’s rule if you are not confident with the limit.) So the series converges when
|x+ 4| < 1, that is for x ∈ (−5,−3). Checking the endpoints, we find that when x = −5, we have

∞∑
n=0

(−1)n

(n lnn)2
,

which converges by the Alternating Series Test, and when x = −3we have

∞∑
n=0

1

(n lnn)2
,

which converges by limit comparison to
∑
1/n2. Therefore the interval of convergence is [−5,−3].
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(6) Find the Taylor series of the following functions and determine the radius of convergence.

(a) f(x) = sin(2x), centered at x = 0.
SOLUTION:

sin(x) =
∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!

sin(2x) =
∞∑

n=0

(−1)n
(2x)2n+1

(2n+ 1)!
=

∞∑
n=0

(−1)n22n+1x2n+1

(2n+ 1)!

Since the formula for sin(x) is valid for all x, the formula for sin(2x) is also valid for all x.

(b) f(x) = e4x, centered at x = 0.
SOLUTION:

ex =

∞∑
n=0

xn

n!

e4x =

∞∑
n=0

(4x)n

n!
=

∞∑
n=0

4nxn

n!

Since the formula for ex is valid for all x, so is the formula for e4x.

(c) f(x) = x2ex
2
, centered at x = 0.

SOLUTION:

ex
2
=

∞∑
n=0

(x2)n

n!
=

∞∑
n=0

x2n+2

n!

x2ex
2
= x2

( ∞∑
n=0

x2n+2

n!

)
=

∞∑
n=0

x2n+2

n!

Since the formula for x2 is valid for all x, so is the formula for x2ex
2
.
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(d) f(x) =
1

3x− 2
, centered at c = −1.

SOLUTION: Rewrite the function as follows:

1

3x− 2
=

1

−5+ 3(x+ 1)
=

−1

5

1

1−
3(x+1)

5

Now use the geometric series formula, valid for |x| < 1.

1

3x− 2
= −

1

5

∞∑
n=0

(
3(x+ 1)

5

)n

= −
1

5

∞∑
n=0

3n5n(x+ 1)n = −

∞∑
n=0

3n

5n+1
(x+ 1)n

This formula is now valid for
∣∣∣3(x+1)

5

∣∣∣ < 1, or |x+ 1| < 5
3 . So the radius of convergence is 5

3 .

(e) f(x) = (1+ x)1/3, centered at c = 0.
SOLUTION: Use the binomial series formula with a = 1

3 .

(1+ x)
1
3 = 1+

∞∑
n=1

(1
3

n

)
xn

The radius of convergence is 1, since the formula is valid for |x| < 1.

(f) f(x) =
√
x, centered at c = 4.

SOLUTION: First rewrite the function

√
x =

√
4+ (x− 4) =

√
4

(
1+

x− 4

4

)
= 2

√
1+

x− 4

4

Now find the MacLaurin series of
√
1+ u by setting a = 1

2 in the binomial series formula.

(1+ u)
1
2 =
√
1+ u = 1+

∞∑
n=1

(1
2

n

)
un.

This is valid for |u| < 1. Now replace u by x−4
4 to get√

1+
x− 4

4
= 1+

∞∑
n=1

(1
2

n

)(
x− 4

4

)n

= 1+

∞∑
n=1

(1
2

n

)
1

4n
(x− 4)n

This is valid for
∣∣∣x−4

4

∣∣∣ < 1 or |x− 4| < 4. So the radius of convergence is 4.

The final answer is:
√
x = 2+

∞∑
n=1

(1
2

n

)
2

4n
(x− 4)n

If you’re willing to do a lot of simplifying, you can eventually get to:

√
x = 2+

∞∑
n=1

(−1)n−1n(2n− 2)!

24n−2(n!)2
(x− 4)n
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