\qquad

TAylor Series

(1) The power series

$$
T(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

is called the Taylor Series for $f(x)$ centered at $x=c$. If $c=0$, this is called a Maclaurin series.
(2) The N -th partial sum

$$
T_{N}(x)=\sum_{n=0}^{N} \frac{f^{(n)}(c)}{n!}(x-c)^{n}=f(c)+\frac{f^{\prime}(c)}{1!}(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(N)}(c)}{N!}(x-c)^{N}
$$

of the Taylor series $T(x)$ is called the N-th Taylor Polynomial for $f(x)$ centered at $x=c$.
(3) Taylor's Theorem. The n-th Taylor polynomial $T_{n}(x)$ centered at $x=a$ approximates the function $f(x)$ with a remainder

$$
f(x)-T_{n}(x)=\frac{1}{n!} \int_{a}^{x}(x-u)^{n} f^{(n+1)}(u) d u .
$$

Corollary. The n-th Taylor polynomial $T_{n}(x)$ centered at $x=a$ approximates $f(x)$ with error at most

$$
\left|f(x)-T_{n}(x)\right| \leq K \frac{|x-a|^{n+1}}{(n+1)!},
$$

where K is a number such that $\left|f^{(n+1)}(u)\right| \leq K$ for all $u \in(a, x)$.
(4) Where functions agree with their Taylor series: Suppose that $T(x)$ is the Taylor series for $f(x)$ centered at c, with radius of convergence R. If there is a number K such that $\left|f^{(n)}(x)\right| \leq K$ for all $x \in(c-R, c+R)$ for all n, then $f(x)=T(x)$ for all $x \in(c-R, c+R)$.
(5) $(1+x)^{a}=1+\sum_{n=1}^{\infty}\binom{a}{n} x^{n}$ for $|x|<1$, where $\binom{a}{n}=\frac{a(a-1)(a-2) \cdots(a-n+1)}{n!}$
(6) Some Taylor series:

Function	Series	Interval of Conve
e^{x}	$\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$	$(-\infty, \infty)$
$\sin (x)$	$\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$	$(-\infty, \infty)$
$\cos (x)$	$\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$	$(-\infty, \infty)$
$\frac{1}{1-x}$	$\sum_{n=0}^{\infty} x^{n}$	$(-1,1)$
$\ln (1+x)$	$\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1}$	$(-1,1]$

Problems

(1) Find the Taylor polynomial $T_{3}(x)$ for $f(x)$ centered at $c=3$ if $f(3)=1, f^{\prime}(3)=2, f^{\prime \prime}(3)=12, f^{\prime \prime \prime}(3)=3$.
(2) Find the Taylor polynomials $T_{2}(x)$ and $T_{3}(x)$ for $f(x)=\frac{1}{1+x}$ centered at $a=1$.
(3) Find n such that $\left|T_{n}(1.3)-\sqrt{1.3}\right| \leq 10^{-6}$, where $T_{n}(x)$ is the Taylor polynomial for \sqrt{x} at $a=1$.
(4) (a) Use the fact that $\arctan (x)$ is an antiderivative of $\frac{1}{1+x^{2}}$ to find a Maclaurin series for $\arctan (x)$, and find the interval of convergence.
(b) Use the fact that $\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}$ and your answer to the previous part to find a series that converges to π.
(5) Find the interval of convergence of the following power series.

$$
\text { (a) } \sum_{n=0}^{\infty} \frac{x^{n}}{n^{4}+2}
$$

(b) $\sum_{n=0}^{\infty} \frac{2^{n}}{3 n}(x+3)^{n}$
(c) $\sum_{n=0}^{\infty} \frac{(x+4)^{n}}{(n \ln n)^{2}}$
(6) Find the Taylor series of the following functions and determine the radius of convergence.
(a) $f(x)=\sin (2 x)$, centered at $x=0$.
(b) $f(x)=e^{4 x}$, centered at $x=0$.
(c) $f(x)=x^{2} e^{x^{2}}$, centered at $x=0$.
(d) $f(x)=\frac{1}{3 x-2}$, centered at $\mathrm{c}=-1$.
(e) $f(x)=(1+x)^{1 / 3}$, centered at $c=0$.
(f) $f(x)=\sqrt{x}$, centered at $c=4$.

