(1) Evaluate $\int_{1}^{4} f(x) d x$ and $\int_{1}^{6}|f(x)| d x$ using the graph below. The two parts of the graph are semicircles.

SOLUTION: The definite integral $\int_{1}^{4} f(x) d x$ is the signed area of one-quarter of a circle of radius 1 which lies below the x-axis and one-quarter of a circle of radius 2 which lies above the x axis. Therefore,

$$
\int_{1}^{4} f(x) d x=\frac{1}{4} \pi(2)^{2}-\frac{1}{4} \pi(1)^{2}=\frac{3}{4} \pi .
$$

The definite integral $\int_{1}^{4} f(x) d x$ is the total area of the shaded region in the picture, which is one-half of a circle of radius 1 and one-half of a circle of radius 2 . The total area is then

$$
\int_{1}^{6}|f(x)| d x=\frac{1}{2} \pi(1)^{2}+\frac{1}{2} \pi(2)^{2}=\frac{\pi}{2}+2 \pi=\frac{5}{2} \pi
$$

(2) Let A be the area under $f(x)=\sqrt{x}$ over the interval $[0,1]$. Prove that $0.52 \leq A \leq 0.77$ without computing an integral. Explain your reasoning.
SOLUTION: To establish upper and lower bounds for the area under $f(x)=\sqrt{x}$, we estimate using either left-endpoint or right-endpoint rectangles. In either case, four rectangles suffice.

Let L_{4} be the left endpoint approximation for $f(x)$ with four rectangles, and let R_{4} be the right endpoint approximation with four rectangles.

For the left endpoint approximation,

$$
\mathrm{L}_{4}=(0.25) \sqrt{0}+(0.25) \sqrt{0.25}+(0.25) \sqrt{0.5}+(0.25) \sqrt{0.75} \approx 0+0.125+0.177+0.216=0.518
$$

For the right endpoint approximation,

$$
\mathrm{R}_{4}=(0.25) \sqrt{0.25}+(0.25) \sqrt{0.5}+(0.25) \sqrt{0.75}+(0.25) \sqrt{1} \approx 0.125+0.177+0.216+0.25=0.768
$$

Since $L_{4}<A<R_{4}$, we know that $0.518<A<0.768$ with some rounding.
(3) Evaluate the indefinite integral.
(a) $\int \frac{1}{x^{4 / 3}} d x$.

SOLUTION: $\int \frac{1}{x^{4 / 3}} \mathrm{~d} x=\int x^{-4 / 3} \mathrm{~d} x=\frac{x^{-1 / 3}}{-1 / 3}+\mathrm{C}=-\frac{3}{x^{1 / 3}}+C$
(b) $\int\left(\frac{4}{x}-e^{x}\right) d x$

SOLUTION: $\int\left(\frac{4}{x}-e^{x}\right) d x=\int \frac{4}{x} d x-\int e^{x} d x=4 \ln |x|+e^{x}+C$
(c) $\int\left(z^{5}+4 z^{2}\right)\left(z^{3}+1\right)^{12} \mathrm{~d} z$.

SOLUTION: Let $u=z^{3}+1$. Then $d u=3 z^{2} d z$ and $z^{3}=u-1$ and

$$
\begin{aligned}
\int\left(z^{5}+4 z^{2}\right)\left(z^{3}+1\right)^{12} & =\frac{1}{3} \int(u+3) u^{12} d u \\
& =\frac{1}{3} \int u^{13}+3 x^{12} d u \\
& =\frac{1}{3}\left(\frac{1}{14} u^{14}+\frac{3}{13} u^{13}\right)+C \quad=\frac{1}{42}\left(z^{3}+1\right)^{14}+\frac{1}{13}\left(z^{3}+1\right)^{14}+C
\end{aligned}
$$

(d) $\int x^{2} \sqrt{x+1} d x$

Solution: Let $u=x+1$. Then $x=u-1$ and $d u=d x$. Hence,

$$
\begin{aligned}
\int x^{2} \sqrt{x+1} d x & =\int(u-1)^{2} u^{1 / 2} d u=\int\left(u^{5 / 2}-2 u^{3 / 2}+u^{1 / 2}\right) d u \\
& =\frac{2}{7} u^{7 / 2}-\frac{4}{5} u^{5 / 2}+\frac{2}{3} u^{3 / 2}+C \\
& =\frac{2}{7}(x+1)^{7 / 2}-\frac{4}{5}(x+1)^{5 / 2}+\frac{2}{3}(x+1)^{3 / 2}+C .
\end{aligned}
$$

(4) Evaluate the definite integral.
(a) $\int_{1}^{27} \frac{t+1}{\sqrt{t}} d t$ SOLUTION:

$$
\begin{aligned}
\int_{1}^{27} \frac{t+1}{\sqrt{t}} d t & =\int_{1}^{27}\left(t^{1 / 2}+t^{-1 / 2}\right) d t \\
& =\left.\left(\frac{2}{3} t^{3 / 2}+2 t^{1 / 2}\right)\right|_{1} ^{27} \\
& =\left(\frac{2}{3}(81 \sqrt{3}+6 \sqrt{3})\right)-\left(\frac{2}{3}+2\right) \\
& =60 \sqrt{3}-\frac{8}{3}
\end{aligned}
$$

(b) $\int_{0}^{5}\left|x^{2}-4 x+3\right| d x$

$$
\begin{aligned}
\int_{0}^{5}\left|x^{2}-4 x+3\right| d x & =\int_{0}^{5}(x-3)(x-1) d x \\
& =\int_{0}^{1}\left(x^{2}-4 x+3\right) d x+\int_{1}^{3}-\left(x^{2}-4 x+3\right) d x+\int 3^{5}\left(x^{2}-4 x+3\right) d x \\
& =\left.\left(\frac{1}{3} x^{3}-2 x^{2}+3 x\right)\right|_{0} ^{1}-\left.\left(\frac{1}{3} x^{3}-2 x^{2}+3 x\right)\right|_{1} ^{3}+\left.\left(\frac{1}{3} x^{3}-2 x^{2}+3 x\right)\right|_{3} ^{5} \\
& =\left(\frac{1}{3}-2+3\right)-0-(9-18+9)+\left(\frac{1}{3}-2+3\right)+\left(\frac{125}{3}-50+15\right)-(9-18+9) \\
& =\frac{28}{3}
\end{aligned}
$$

(c) $\int_{\pi / 4}^{5 \pi / 8} \cos 2 x d x$ SOLUTION:

$$
\begin{aligned}
\int_{\pi / 4}^{5 \pi / 8} \cos 2 x d x & =\left.\frac{1}{2} \sin 2 x\right|_{\pi / 4} ^{5 \pi / 8} \\
& =\frac{1}{2} \sin \frac{5 \pi}{4}-\frac{1}{2} \sin \frac{\pi}{2} \\
& =-\frac{\sqrt{2}}{4}-\frac{1}{2}
\end{aligned}
$$

(d) $\int_{0}^{\sqrt{e-1}} \frac{x^{3}}{x^{2}+1} d x$

SOLUTION: Let $u=x^{2}+1$, so $d u=2 x d x$. The bounds change from $x=0$ to $u=1$ and from $x=\sqrt{e-1}$ to $u=e$.

$$
\int_{0}^{\sqrt{e-1}} \frac{x^{3}}{x^{2}+1} d x=\int_{1}^{e} \frac{1}{2} \frac{x^{2}}{u} d u
$$

To get rid of the x^{2} in this integral, use the equation $u=x^{2}+1 \Longrightarrow x^{2}=u-1$. The integral becomes

$$
\begin{aligned}
\frac{1}{2} \int_{1}^{e} \frac{u-1}{u} d u & =\frac{1}{2} \int_{1}^{e}\left(1-\frac{1}{u}\right) d u \\
& =\frac{1}{2} \int_{1}^{e} 1 d u-\frac{1}{2} \int_{1}^{e} \frac{1}{u} d u \\
& =\left.\frac{1}{2} u\right|_{1} ^{e}-\left.\frac{1}{2} \ln |u|\right|_{1} ^{e} \\
& =\frac{1}{2}(e-1)-\frac{1}{2}(1-0) \\
& =\frac{e}{2}-1
\end{aligned}
$$

(5) Show that $f(x)=\tan ^{2}(x)$ and $g(x)=\sec ^{2}(x)$ have the same derivative. What can you conclude about the relationship between f and g ?
Solution:

$$
\begin{aligned}
& f^{\prime}(x)=\frac{d}{d x} \tan ^{2}(x)=2 \tan (x) \cdot \sec ^{2}(x)=2 \sec ^{2}(x) \tan (x) \\
& g^{\prime}(x)=\frac{d}{d x} \sec ^{2}(x)=2 \sec (x) \cdot \sec (x) \tan (x)=2 \sec ^{2}(x) \tan (x)
\end{aligned}
$$

This means that both f and g are antiderivatives of the function $2 \sec ^{2}(x) \tan (x)$; they therefore differ by a constant. To figure out what this constant is, plug in a particular value of x, say $x=0$.

$$
\begin{aligned}
& f(0)=\tan ^{2}(0)=0 \\
& g(0)=\sec ^{2}(0)=1
\end{aligned}
$$

So $f(x)=g(x)+1$.
(6) Calculate the derivative. $\frac{d}{d x} \int_{0}^{x^{2}} \frac{t d t}{t+1}$

SOLUTION: By the chain rule and the fundamental theorem of calculus,

$$
\frac{d}{d x} \int_{0}^{x^{2}} \frac{t d t}{t+1}=\frac{x^{2}}{x^{2}+1} \cdot 2 x=\frac{2 x^{3}}{x^{2}+1} .
$$

(7) Let $N(d)$ be the number of asteroids of diameter d kilometers. Data suggest that the diameters are distributed according to a piecewise power law:

$$
\mathrm{N}^{\prime}(\mathrm{d})=\left\{\begin{array}{l}
1.9 \times 10^{9} \mathrm{~d}^{-2.3}, \text { for } \mathrm{d}<70 \\
2.6 \times 10^{12} \mathrm{~d}^{-4}, \text { for } \mathrm{d} \geq 70
\end{array}\right.
$$

(a) Compute the number of asteroids with a diameter between 0.1 km and 100 km . SOLUTION: The number of asteroids with diameter between 0.1 and 100 km

$$
\begin{aligned}
\int_{0.1}^{100} \mathrm{~N}^{\prime}(\mathrm{d}) \mathrm{dd} & =\int_{0.1}^{70} 1.9 \times 10^{9} \mathrm{~d}^{-2.3} \mathrm{dd}+\int_{70}^{100} 2.6 \times 10^{12} \mathrm{~d}^{-4} \mathrm{dd} \\
& =-\left.\frac{1.9 \times 10^{9}}{1.3} \mathrm{~d}^{-1.3}\right|_{0.1} ^{70}-\left.\frac{2.6 \times 10^{12}}{3} \mathrm{~d}^{-3}\right|_{70} ^{100} \\
& =2.916 \times 10^{10}+1.66 \times 10^{6} \approx 2.916 \times 10^{10}
\end{aligned}
$$

(b) Using the approximation $N(d+1) N(d) \approx N^{\prime}(d)$, estimate the number of asteroids of diameter 50 km .
SOLUTION: Taking $\mathrm{d}=49.5$,

$$
N(50.5)-N(49.5) \approx N^{\prime}(49.5)=1.9 \times 10^{9} 49.5^{-2.3}=240,525.70
$$

Thus, there are approximately 240,526 asteroids of diameter 50 km .

