## Homework 1

Math 1910, Summer 2018
$\qquad$
(1) Evaluate $\int_{1}^{4} f(x) d x$ and $\int_{1}^{6}|f(x)| d x$ using the graph below. The two parts of the graph are semicircles.

(2) Let $A$ be the area under $f(x)=\sqrt{x}$ over the interval $[0,1]$. Prove that $0.52 \leq A \leq 0.77$ without computing an integral. Explain your reasoning.
(3) Evaluate the indefinite integral.
(a) $\int \frac{1}{x^{4 / 3}} d x$.
(b) $\int\left(\frac{4}{x}-e^{x}\right) d x$
(c) $\int\left(z^{5}+4 z^{2}\right)\left(z^{3}+1\right)^{12} \mathrm{~d} z$.
(d) $\int x^{2} \sqrt{x+1} d x$
(4) Evaluate the definite integral.
(a) $\int_{1}^{27} \frac{t+1}{\sqrt{t}} d t$
(b) $\int_{0}^{5}\left|x^{2}-4 x+3\right| d x$
(c) $\int_{\pi / 4}^{5 \pi / 8} \cos 2 x d x$
(d) $\int_{0}^{\sqrt{e-1}} \frac{x^{3}}{x^{2}+1} d x$
(5) Show that $f(x)=\tan ^{2}(x)$ and $g(x)=\sec ^{2}(x)$ have the same derivative. What can you conclude about the relationship between $f$ and $g$ ?
(6) Calculate the derivative. $\frac{d}{d x} \int_{0}^{x^{2}} \frac{t d t}{t+1}$
(7) Let $N(d)$ be the number of asteroids of diameter $d$ kilometers. Data suggest that the diameters are distributed according to a piecewise power law:

$$
\mathrm{N}^{\prime}(\mathrm{d})=\left\{\begin{array}{l}
1.9 \times 10^{9} \mathrm{~d}^{-2.3}, \text { for } \mathrm{d}<70 \\
2.6 \times 10^{12} \mathrm{~d}^{-4}, \text { for } \mathrm{d} \geq 70
\end{array}\right.
$$

(a) Compute the number of asteroids with a diameter between 0.1 km and 100 km .
(b) Using the approximation $N(d+1)-N(d) \approx N^{\prime}(d)$, estimate the number of asteroids of diameter 50 km .

