
HOMEWORK 3 NAME: SOLUTIONS
Math 1910, Summer 2018 Due 24 July 2018

(1) Evaluate the following integrals, or state that they diverge.

(a)
∫∞
0
e−x cos(x)dx

SOLUTION:

First evaluate the indefinite integral using integration by parts, with u = e−x,
dv = cos x dx. Then du = −e−x, v = sin x, and

∫
e−x cos xdx = e−x sin x−

∫
sin x

(
−e−x

)
dx = e−x sin x+

∫
e−x sin xdx

Now use integration by parts again, with u = e−x, dv = sin x dx. Then du =

−e−xdx, v = − cos x, and∫
e−x cos xdx = e−x sin x+

[
−e−x cos x−

∫
e−x cos xdx

]
.

Solving this equation for
∫
e−x cos xdx, we find∫

e−x cos xdx =
1

2
e−x(sin x− cos x) +C.

Thus,∫R
0
e−x cos xdx =

1

2
e−x (sin x− cos x)|R0 =

sinR− cosR
2eR

−
sin 0− cos 0

2
=

sinR− cosR
2eR

+
1

2
,

and ∫∞
0
e−x cos xdx = lim

R→∞
(

sinR− cosR
2eR

+
1

2

)
= 0+

1

2
=
1

2
.
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(b)
∫3
0

1√
9− x2

dx

SOLUTION:

We begin by letting x = 3 sin θ, which gives dx = 3 cos θdθ. Substituting into
the integral, we obtain∫3

0

dx√
9− x2

=

∫ π
2

0

3 cos θdθ√
9− 9sin2θ

=

∫ π
2

0

cos θdθ√
1− sin2

=

∫ π
2

0

cos θdθ
cos θ

=

∫ π
2

0
dθ =

π

2

(c)
∫∞
4

1

(x− 2)(x− 3)
dx

SOLUTION:

The partial fraction decomposition takes the form

1

(x− 2)(x− 3)
=

A

x− 2
+

B

x− 3
.

Clearing denominators gives us

1 = A(x− 3) +B(x− 2).

Setting x = 2 then yields A = −1, while setting x = 3 yields B = 1. Thus,∫
dx

(x− 2)(x− 3)
=

∫
dx

x− 3
−

∫
dx

x− 2
= ln |x− 3|− ln |x− 2|+C = ln

∣∣∣∣x− 3x− 2

∣∣∣∣+C,

and, for R > 4,∫R
4

dx

(x− 2)(x− 3)
= ln

∣∣∣∣x− 3x− 2

∣∣∣∣R
4

= ln
∣∣∣∣R− 3R− 2

∣∣∣∣− ln
1

2
.

Then∫∞
4

1

(x− 2)(x− 3)
dx = lim

R→∞
(

ln
∣∣∣∣R− 3R− 2

∣∣∣∣− ln
1

2

)
= ln 1− ln

1

2
= ln 2.
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(d)
∫1
0

1

x1/3 + x2/3 dx

SOLUTION:

To begin, let u = x1/3. Then du = dx
3x2/3 . Thus we have∫

1

x1/3 + x2/3dx =

∫
1

u+ u2
dx =

∫
3u

(u+ 1)(3u2)
dx =

∫
3u

u+ 1
du

Since
3
u

u+ 1
= 3

u+ 1− 1

u+ 1
= 3

u+ 1

u+ 1
−

3

u+ 1
= 3−

3

u+ 1
,

we have ∫
3
u

u+ 1
=

∫
3−

3

u+ 1
= u− 3 ln(u+ 1),

and thus ∫1
0

1

x1/3 + x2/3 = 3x1/3 − 3 ln(x1/3 + 1)|10 = 3− 3 ln(2).
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(2) Find a constantC such that p(x) is a probability density function on the given interval,
and compute the probability indicated.

(a) p(x) =
C

(x+ 1)3
on [0,∞); P(0 ≤ X ≤ 1).

SOLUTION: Compute the indefinite integral using the substitution u = x+ 1,
du = dx : ∫

p(x)dx =

∫
C

(x+ 1)3
dx = −

1

2
C(x+ 1)−2 +K

For p to be a probability density function, we must have

1 =

∫∞
0
p(x)dx = −

1

2
C lim
R→∞ (x+ 1)−2

∣∣∣R
0
=
1

2
C−

1

2
C lim
R→∞(R+ 1)−2 =

1

2
C

so that C = 2, and p(x) = 2
(x+1)3

. Then using the indefinite integral above,

P(0 ≤ X ≤ 1) =
∫1
0

2

(x+ 1)3
= −

1

2
· 2 · (x+ 1)−2

∣∣∣1
0
= −

1

4
+ 1 =

3

4
.

(b) p(x) =
Ce−x

1+ e−2x
on (−∞,∞); P(X ≤ −4).

SOLUTION:
Compute the indefinite integral using the substitution u = e−x; then du =

−e−xdx, and∫
p(x)dx =

∫
Ce−x

1+ e−2x
dx = −C

∫
du

1+ u2
= −C tan−1 u+K = −C tan−1

(
e−x
)
+K.

Using the identity

tan−1y+ tan−1 1

y
=
π

2

the indefinite integral can be expressed as∫
p(x)dx = C tan−1 (ex) +K′,

where K ′ = K− π
2C. For p to be a probability density function, we must have

1 =

∫∞
−∞ p(x)dx =

∫0
−∞ p(x)dx+

∫∞
0
p(x)dx

= −C

(
lim
R→−∞ tan−1

(
e−x
)∣∣0
R
+ lim
R→∞ tan−1

(
e−x
)∣∣R
0

)
= −C

(
π

4
− lim
R→−∞ tan−1

(
e−R
)
+ lim
R→∞ tan−1

(
e−R
)
−
π

4

)
= −C(−

π

2
+ 0) =

π

2
C
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so that C = 2
π and p(x) = 2e−x

π(1+e−2x)
. Then using the definite integral above,

P(X ≤ −4) =

∫−4
−∞ p(x)dx = lim

R→−∞ 2

π
tan−1 (ex)|−4R =

2

π
tan−1

(
e−4
)
−
2

π
lim
R→−∞ tan−1

(
eR
)

=
2

π
tan−1

(
e−4
)
≈ 0.0117
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(3) The distance r between the electron and the nucleus in a hydrogen atom is a random
variable with probability density p(r) = 4a−30 r

2e−2r/a0 for r ≥ 0, where a0 is the
Bohr radius, a0 ≈ 5.29× 10−11 m.

(a) Calculate the probability P that the electron is within one Bohr radius of the
nucleus.

SOLUTION:
The probability P is the integral of p(x) from 0 to a0. To calculate P, use the
substitution u = 2r

a0
:

P =

∫a0
0
p(r)dr =

4

a30

∫a0
0
r2e−2r/a0dr =

(
4

a30

)(
a30
8

) ∫2
0
u2e−udu.

The constant in front simplifies to 1
2 , and the formula in the margin gives us

P =
1

2

∫2
0
u2e−udu =

1

2

(
−
(
u2 + 2u+ 2

)
e−u

)∣∣∣2
0
=
1

2

(
2− 10e−2

)
≈ 0.32.

Thus, the electron is within a distance a0 of the nucleus with probability 0.32.

(b) Calculate the average distance between the electron and the nucleus.

SOLUTION:
The mean of the distribution is

µ =

∫∞
0
rp(r)dr =

∫∞
0
r · 4a−30 r

2e−2r/a0dr =
4

a30

∫∞
0
r3e−2r/a0dr.

To calculate this integral, use as before the substitution x = 2r
a0

to get

µ =
4

a30
· a

3
0

8
· a0
2

∫∞
0
x3e−xdx =

a0
4

∫∞
0
x3e−xdx.

To calculate this integral, we use integration by parts, with u = x3, and dv =

e−xdx, so that du = 3x2dx, and v = −e−x; then

µ =
a0
4

(
−x3 e−x

∣∣∞
0

+ 3

∫∞
0
x2e−xdx

)
The first term is evaluated as follows, using L’Hopital’s Rule multiple times:

−x3 e−x
∣∣∞
0

= lim
R→∞

(
−x3e−x

)∣∣∣R
0
= lim
R→∞

(
−
R3

eR

)
= lim
R→∞

(
−
3R2

eR

)
= lim
R→∞

(
−
6R

eR

)
= lim
R→∞

(
−
6

eR

)
= 0
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The second term, by part (a), is∫∞
0
x2e−xdx = lim

R→∞
((

−u2 + 2u+ 2
)
e−u

)∣∣∣R
0
= lim
R→∞

(
2−

−R2 + 2R+ 2

eR

)
= 2

using L’Hopital’s Rule as in the previous formulas. Thus, finally,

µ =
a0
4
(0+ 3 · 2) = 3

2
a0.
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(4) The solid S obtained by rotating the region below the graph of y = x−1 around the x
axis for 1 ≤ x <∞ is called Gabriel’s Horn.

(a) Compute the volume of S.

SOLUTION:

The volume is given by

V =

∫∞
1
π

(
1

x

)2
dx.

First compute the volume over a finite interval∫R
1
π

(
1

x

)2
dx = π

∫R
1
x−2dx = π

x−1

−1

∣∣∣∣R
1

= π

(
−1

R
−

−1

1

)
= π

(
1−

1

R

)
.

Thus,

V = lim
R→∞

∫∞
1
πx−2dx = lim

R→∞π
(
1−

1

R

)
= π
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Question (4), continued.

(b) Compute the surface area of S.

SOLUTION:

For x > 1, we have

1

x

√
1+

1

x4
=
1

x

√
x4 + 1

x4
=

√
x4 + 1

x3
≥
√
x4

x3
=
x2

x3
=
1

x

The integral
∫∞
1
1
xdx diverges, since p = 1 ≥ 1. Therefore, by the comparison

test, ∫∞
1

1

x

√
1+

1

x4
dx also diverges.

Finally,

A = 2π

∫∞
1

1

x

√
1+

1

x4
dx

diverges, and thus the surface area of the solid is infinite.

(c) What is surprising about this? Would you rather use one of these as a cup or
cut it up and use the pieces as paper?

SOLUTION:

The obvious answer here is that we would typically expect a surface to have
finite surface area if and only if it has finite volume. This is just another example
of how weird infinity can be.

The choice is tricky. A cup with infinite surface area would be pretty awesome
to have. On the other hand, if you had infinite paper, you could sell paper
as cheaply as you wanted and become rich as the world’s number one paper
supplier. Cool cup or infinite riches? Kind of a toss up, I suppose.
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(5) Find the surface area of the torus obtained by rotating the circle x2 + (y− b)2 = r2

around the x-axis.

SOLUTION: y = b+
√
a2 − x2 gives the top half of the circle, and y = b−

√
a2 − x2

gives the bottom half. Note that in each case,

1+
(
y′
)2

= 1+
x2

a2 − x2
=

a2

a2 − x2
.

Rotating the two halves of the circle around the x-axis then yields

SA = 2π

∫a
−a

(
b+

√
a2 − x2

) a√
a2 − x2

dx+ 2π

∫a
−a

(
b−

√
a2 − x2

) a√
a2 − x2

dx

= 2π

∫a
−a
2b

a√
a2 − x2

dx = 4πba

∫a
−a

1√
a2 − x2

dx

= 4πba · sin−1
(x
a

)∣∣∣a
−a

= 4πba
(π
2
−
(
−
π

2

))
= 4π2ba
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