Homework 3

Math 1910, Summer 2018

NAME: \qquad
Due 24 July 2018
(1) Evaluate the following integrals, or state that they diverge.
(a) $\int_{0}^{\infty} e^{-x} \cos (x) d x$
(b) $\int_{0}^{3} \frac{1}{\sqrt{9-x^{2}}} d x$
(c) $\int_{4}^{\infty} \frac{1}{(x-2)(x-3)} d x$
(d) $\int_{0}^{1} \frac{1}{x^{1 / 3}+x^{2 / 3}} d x$
(2) Find a constant C such that $p(x)$ is a probability density function on the given interval, and compute the probability indicated.
(a) $p(x)=\frac{C}{(x+1)^{3}}$ on $[0, \infty) ; \quad \mathrm{P}(0 \leq X \leq 1)$.
(b) $p(x)=\frac{C e^{-x}}{1+e^{-2 x}}$ on $(-\infty, \infty) ; \quad \mathrm{P}(X \leq-4)$.
(3) The distance r between the electron and the nucleus in a hydrogen atom is a random variable with probability density $p(r)=4 a_{0}^{-3} r^{2} e^{-2 r / a_{0}}$ for $r \geq 0$, where a_{0} is the Bohr radius, $a_{0} \approx 5.29 \times 10^{-11} \mathrm{~m}$.
(a) Calculate the probability P that the electron is within one Bohr radius of the nucleus.
(b) Calculate the average distance between the electron and the nucleus.
(4) The solid S obtained by rotating the region below the graph of $y=x^{-1}$ around the x axis for $1 \leq x<\infty$ is called Gabriel's Horn.

(a) Compute the volume of S .

Question (4), continued.
(b) Compute the surface area of S.
(c) What is surprising about this? Would you rather use one of these as a cup or cut it up and use it the pieces as paper?
(5) Find the surface area of the torus obtained by rotating the circle $x^{2}+(y-b)^{2}=r^{2}$ around the x-axis.

