HOMEWORK 3 Math 1910, Summer 2018

(1) Evaluate the following integrals, or state that they diverge.

(a)
$$\int_0^\infty e^{-x} \cos(x) \, \mathrm{d}x$$

(b)
$$\int_0^3 \frac{1}{\sqrt{9-x^2}} dx$$

(c)
$$\int_4^\infty \frac{1}{(x-2)(x-3)} \, dx$$

(d)
$$\int_0^1 \frac{1}{x^{1/3} + x^{2/3}} \, dx$$

(2) Find a constant C such that p(x) is a probability density function on the given interval, and compute the probability indicated.

(a)
$$p(x) = \frac{C}{(x+1)^3}$$
 on $[0, \infty)$; $P(0 \le X \le 1)$.

(b)
$$p(x) = \frac{Ce^{-x}}{1 + e^{-2x}}$$
 on $(-\infty, \infty)$; $P(X \le -4)$.

- (3) The distance r between the electron and the nucleus in a hydrogen atom is a random variable with probability density $p(r)=4\alpha_0^{-3}r^2e^{-2r/\alpha_0}$ for $r\geq 0$, where α_0 is the Bohr radius, $\alpha_0\approx 5.29\times 10^{-11}$ m.
 - (a) Calculate the probability P that the electron is within one Bohr radius of the nucleus.

(b) Calculate the average distance between the electron and the nucleus.

(4) The solid S obtained by rotating the region below the graph of $y = x^{-1}$ around the x axis for $1 \le x < \infty$ is called *Gabriel's Horn*.

(a) Compute the volume of S.

Onestion	(4)	continued
Question	(エノノ	Commuca

(b) Compute the surface area of S.

(c) What is surprising about this? Would you rather use one of these as a cup or cut it up and use it the pieces as paper?

(5) Find the surface area of the torus obtained by rotating the circle $x^2 + (y - b)^2 = r^2$ around the x-axis.

