HOMEWORK 4 NAME: SOLUTIONS
Math 1910, Summer 2018 Due 2 August 2018
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(1) Determine the limit of the sequence x,, = o

or show that it diverges.

SOLUTION: L (Cgn 3\ n
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assuming both limits on the right-hand side exist. But by the limit of Geometric Sequences, since
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-IT<—<0<=x<1
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both limits on the right-hand side are 0, so that x,, converges to 0.

(2) Give an example of a divergent sequence {an} such that lim |an|converges.
n—oo

SOLUTION: Let an = (—1)™. Then {an} diverges, and {|an [} is the constant sequence which is always
1.
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SOLUTION: This series can be written
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Use partial fraction decomposition to find that
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Thus the series telescopes: it has partial sums
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Hence we have
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Express the integral J arctan(x?) dx as an infinite series and find its value to within 10~%.
0
SOLUTION: Substituting x? for x in the Maclaurin series for tan~' (x) yields
—1 2\ _ “L _ _ nxi.
tan~! () = 3 (0N = X D
n=0 n=0
therefore,
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This is an alternating series with a,, = m; therefore, the error incurred by using Sy to

approximate the value of the definite integral is bounded by

J; tan™! (xz) dx — Sn
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To guarantee the error is at most 0.0001, we must choose N so that

0001 2N +3)(4N +7) > 10000.
ONT3)@N 7y < 00001 or (2N 3)(4N+7) > 10000

For N =33, (2N +3)(4N+7) = (69)(139) = 9591 < 10000 and for N = 34, (2N + 3)(4N +7) > 10000;
thus, the smallest acceptable value for N is N = 34. The corresponding approximation is

34
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(5) Determine convergence or divergence of the series.

(@) Z lnn

SOLUTION:

Let f(x) = ——. This function is positive and continuous for x > 2. Moreover,
x(Inx)2 P
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/ _ . 2 . R 2
'(x) = 7x2(lnx)4 (1 (Inx)* +x-2(Inx) x> 7x2(lnx)4 ((lnx) +21nx) .
Since Inx > 0 for x > 1, f/(x) is negative for x > 1; hence, f is decreasing for x > 2. To compute
the improper integral, we make the substitution u = In(x), du = %dx. We obtain:
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The integral converges; hence, the series ) >, -

%]2 also converges.
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For large n,
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so we apply the Limit Comparison Test with b,, = e™™. We find
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The series Y 70 ;e ™ = Y | (%) is a geometric series with r = % < 1, so it converges.

Because L exists, by the Limit Comparison Test we can conclude that the series Y 5, e2:+:2
also converges.
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SOLUTION: With a = (1 + %) ,
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Therefore, the series ) ;> (1 + %) converges by the Root Test.



Question (5), continued.
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SOLUTION: Apply the Limit Comparison Test with an = —7———and bn = ;7 :
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The series Zn_1 > is a convergent p-series. Because L exists, by the Limit Comparison Test we

can conclude that the series ) 4 nzﬁm also converges.

) Z sin( 1/n

SOLUTION: Apply the Limit Comparison Test with a, = % and b, =

~
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so that Za,, and Zby, either both converge or both diverge. But
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is a convergent p-series, and so our original series converges as well.
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SOLUTION: We use the ratio test:
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and thus the series converges.



(6) Find the Taylor series centered at 0 and the interval on which the expansion is valid.

(@) x*+3x—1

SOLUTION: To determine the Taylor series for x* +3x — 1, we must evaluate the function and its
first four derivatives of the function at 0. This yields f(0) = —1, f'(0) = 3, f”/(0) = 0, f"/(0) =0,
and """ (0) = 24.

oo f
n=0 n!

From this, and using the Taylor Series formula T = X (x —c)™, weobtain T = x* +3x—1,

which converges everywhere.

(b) (x% +2x)e*

SOLUTION:
Using the Maclaurin series for e*, we find

x on O n+2 0 2 n+1 0 1 2
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This series is valid for all x by the ratio test.
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SOLUTION: Write
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Thus -
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This series is valid for |x| < % by the ratio test.



Question (6), continued.

(a) cos?(x)
SOLUTION: We will use the identity cos?(x) = %(1 + cos 2x).

The Maclaurin series for cos(2x) is

e 2n e 2n,2n
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n=0 n=0
so the Maclaurin series for cos? x = %(1 + cos 2x) is
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which is convergent everywhere.

(b) J: et dt

SOLUTION: Substituting t? for t in the Maclaurin series for e! yields
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therefore,
X 2 et t2n+1 x 0 X2n+1
e dX == B ———— fn —
JO Z nl2Zn+1)|, 2 nl(2n+1)
n=0 n=0

This series converges everywhere by the ratio test.



