HOMEWORK 4
Math 1910, Summer 2018

(1) Determine the limit of the sequence $x_n = \frac{e^n + (-3)^n}{5^n}$ or show that it diverges.

(2) Give an example of a divergent sequence $\{\alpha_n\}$ such that $\lim_{n\to\infty}|\alpha_n|$ converges.

(3) Find the sum: $\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots$

(4) Express the integral $\int_0^1 \arctan(x^2) dx$ as an infinite series and find its value to within 10^{-4} .

(5) Determine convergence or divergence of the series.

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

(b)
$$\sum_{n=1}^{\infty} \frac{e^n + n}{e^{2n} - n^2}$$

(c)
$$\sum_{n=4}^{\infty} \left(1 + \frac{1}{n}\right)^{-n^2}$$

Question (5), continued.

$$(c) \sum_{n=1}^{\infty} \frac{1}{n^2 + \sin n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{\sin(1/n)}{\sqrt{n}}$$

(e)
$$\sum_{n=1}^{\infty} \frac{e^n}{n!}$$

(6) Find the Taylor series centered at 0 and the interval on which the expansion is valid.

(a)
$$x^4 + 3x - 1$$

(b)
$$(x^2 + 2x)e^x$$

(c)
$$\frac{1}{3x-2}$$

Question (6), continued.

(a)
$$\cos^2(x)$$

(b)
$$\int_0^x e^{t^2} dt$$