Learning Objectives

By the end of this section, you will be able to:

- use geometry to compute simple definite integrals;
- write down integrals for the (signed) area under a curve;
- estimate an integral using right endpoint or left endpoint approximations.

Review

- To review summation notation, read pages 227-228 in section 5.1 in the textbook, or watch this YouTube video: https://youtu.be/54Q0KXX_vIs. Another helpful resource is the website at the URL below.

```
http://www.columbia.edu/itc/sipa/math/summation.html
```

- To review functions and graphing, read sections 1.1-1.4 in the textbook. Desmos is a good online tool for visualizing graphs: https://www.desmos.com/calculator.

READING

- Read section 5.2 in the textbook, or watch the YouTube video at the URL below and answer the following questions.

```
https://www.youtube.com/watch?v=UG3GchWca7c&feature=youtu.be
```


QUESTIONS

(1) Using at least six rectangles, estimate the area under the graph of $f(x)=2 x+3$ over the interval $[0,3]$. SOLUTION: First, draw a picture:

The x-coordinates in question go from $x_{0}=0$ to $x_{5}=3$ by increments of $\Delta x=\frac{1}{2}$. So $x_{i}=\frac{1}{2} \cdot i=i / 2$. The height of the i-th rectangle is $f\left(x_{i}\right)=2 x_{i}+3$. Hence, the area of each rectangle is $\frac{1}{2}\left(2 x_{i}+3\right)$. The total area of all rectangles is the sum of the areas of the individual rectangles.

$$
\sum_{i=0}^{5}\left(2 x_{i}+3\right) \Delta x=\sum_{i=0}^{5}(2(i / 2)+3) \Delta x=\sum_{i=0}^{5} \frac{\mathfrak{i}+3}{2}=\frac{3}{2}+\frac{3.5}{2}+\frac{4}{2}+\frac{4.5}{2}+\frac{5}{2}+\frac{5.5}{2}=\frac{25.5}{2}=12.75
$$

(I chose to use left-hand endpoints in my solution; you may have choosen to use right-hand endpoints.)
(2) Write down integrals to represent the following areas:
(a) the shaded quadrilateral pictured below.

SOLUTION: First, we need to find the equation for the line in the picture. It passes through the points $(-1,3)$ and $(2,1)$, and therefore has a slope of $(1-3)(2-(-1))=-2 / 3$. So using point-slope form, the equation is

$$
y-1=\frac{-2}{3}(x-2)
$$

Solving for y, we have $y=(-2 / 3) x-(1 / 3)$. The area is from $x=-1$ to $x=2$, so the integral is

$$
\int_{-1}^{2}-\frac{2}{3} x-\frac{1}{3} d x
$$

(b) the area under the quarter-circle pictured below.

SOLUTION: The equation for a circle is $x^{2}+y^{2}=r^{2}$, where r is the radius. This circle has radius 2 , so the equation is $x^{2}+y^{2}=4$. However, we need to first solve for y to take the integral. We can do that as below:

$$
\begin{aligned}
x^{2}+y^{2} & =4 \\
y^{2} & =4-x^{2} \\
y & = \pm \sqrt{4-x^{2}}
\end{aligned}
$$

Don't forget that when you take a square root, you could get either the plus or minus square root! In this case, because the quarter circle is above the x-axis, we take the positive square root. Hence, the integral is

$$
\int_{0}^{2} \sqrt{4-x^{2}} d x
$$

