Learning Objectives

By the end of this lesson, you will be able to:

- Use integration by parts to evaluate integrals of products.
- Evaluate integrals of the form $\int \sin ^{n}(x) \cos ^{m}(x) d x$, and similar integrals involving other trigonometric functions.

REVIEW

- Review trigonometric identities. A good resource is here:

```
http://www2.clarku.edu/~djoyce/trig/identities.html
```


READING

- Read section 8.1
- Read section 8.2

QUESTIONS

(1) How do you evaluate an integral like $\int e^{x} \cos (x) d x$ where integrating by parts takes you in a circle? SOLUTION: If integration by parts takes you in a circle, you can collect like terms and divide by a constant to get what you want. Essentially, set

$$
I=\int e^{x} \cos (x) d x
$$

and then solve for I.
(2) Which trigonometric identity is used to evaluate $\int \sin ^{2}(\theta) d \theta$?

Solution: The power-reducing identity

$$
\sin ^{2}(\theta)=\frac{1-\cos (2 \theta)}{2}
$$

(3) Describe strategies to integrate $\int \sin ^{n}(x) \cos ^{m}(x) d x$ when:
(a) m and n are both even.

SOLUTION: Use the power-reducing identity on either $\sin ^{n}(x) \operatorname{or~}_{\cos ^{m}}(x)$ to get an integral with either all sines or all cosines. Then repeat: use the power-reducing identity on the other until you have an integral of a sum of either all sines or all cosines with no powers. This integral can be evaluated directly.
(b) m is even and n is odd.

SOLUTION: Substitute $\sin ^{2}(x)=\left(1-\cos ^{2}(x)\right)$ for all but one of the factors of $\sin (x)$ in the integral. Then use the substitution $t=\cos (x), d t=-\sin (x) d x$.
(c) m and n are both odd.

Solution: Same as the previous part.

