Reading Assignment 08

§8.3 (Trig substitution), $\S 8.5$ (Partial fractions)

NAME: \qquad

Learning Objectives

By the end of this lesson, you will be able to:

- Compute integrals of the form $\int\left(a x^{2}+b x+c\right)^{n / 2} d x$ using trigonometric substitution.
- Compute integrals of rational functions using partial fractions.

REVIEW

- Review completing the square and the definitions of sine, cosine, and tangent (i.e. $\sin (x)=$ opposite/hypotenuse, etc.).
- Review polynomial long division.

Reading

- Read section 8.3
- Read section 8.5

Questions

(1) If $\tan ^{-1}(\theta)=\frac{a}{b}$, then what is $\sin (\theta)$?
(2) Describe the strategy used to integrate $\int \frac{P(x)}{Q(x)} d x$ when:
(a) The degree of $P(x)$ is larger than the degree of $Q(x)$.
(b) The degree of $Q(x)$ is larger than the degree of $P(x)$, and $Q(x)$ splits into distinct factors of the form $(x-a)$.
(c) The degree of $Q(x)$ is larger than the degree of $P(x)$, and $Q(x)$ has an irreducible quadratic factor $\left(x^{2}+a\right)$.

