Learning Objectives

By the end of this lesson, you will be able to:

- Compute an improper integral as a limit of proper integrals.
- Use the comparison test to determine whether an improper integral converges or diverges.

REVIEW

- Review L'Hôpital's rule: if $\frac{f(x)}{g(x)}$ is one of the indeterminate forms $\frac{0}{0}, \frac{\infty}{\infty}, \ldots$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

Reading

- Read section 8.7

Questions

(1) Use the definition of improper integrals to rewrite the improper integrals below as limits of proper integrals.
(a) $\int_{-\infty}^{-1} \frac{1}{x} d x$

SOlUTION:

$$
\lim _{a \rightarrow-\infty} \int_{a}^{-1} \frac{1}{x} d x
$$

(b) $\int_{0}^{2} \frac{1}{(x-1)} d x$ Solution:

$$
\int_{0}^{2} \frac{1}{(x-1)} d x=\lim _{a \rightarrow 1} \int_{0}^{a} \frac{1}{x-1} d x+\lim _{b \rightarrow 1} \int_{b}^{2} \frac{1}{x-1} d x
$$

(2) When using the comparison test to determine convergence or divergence of improper integrals, we almost always compare to a particular class of improper integral called the p-integrals. For each of the improper integrals below, which p-integral should we compare it to in order to determine convergence or divergence?
(a) $\int_{1}^{\infty} \frac{1}{\sqrt{x^{3}+1}} \mathrm{dx}$

Solution:

$$
\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x
$$

(b) $\int_{0}^{\frac{1}{2}} \frac{1}{x^{8}+x^{2}} d x$

Solution:

$$
\int_{0}^{\frac{1}{2}} \frac{1}{x^{2}} d x
$$

