Learning Objectives

By the end of this lesson, you will be able to:

- determine whether or not a function represents a probability density function
- compute probabilities and averages of random variables, given their probability density functions,
- use the trapezoid, midpoint, and Simpson's rules to approximate integrals, and compute errors for these approximations.

REVIEW

- Review Riemann sums and sigma notation for the numerical integration section.

Reading

- Read section 8.8
- Read section 8.9

Questions

(1) The function $p(x)=\cos (x)$ satisfies $\int_{-\pi / 2}^{\pi} p(x) d x=1$. Is p a probability density function on $[-\pi / 2, \pi]$? SOLUTION: No, because $p(x)$ is not always nonnegative.
(2) What is the graphical interpretation of Simpson's rule?

SOLUTION: Simpson's rule approximates the area under the graph of $y=f(x)$ using parabolas, instead of trapezoids or rectangles.
(3) The N-th Simpson's rule approximation can be written as $S_{2 N}=\frac{2}{3} M_{N}+\frac{1}{3} T_{N}$, where M_{N} is the N-th midpoint rule approximation and T_{N} is the N -th trapezoidal approximation. Why is the midpoint-rule approximation weighted more heavily in this sum?
SOLUTION: The error bound for M_{N} is smaller - it is one-half that of T_{N}.

