Learning Objectives

By the end of this lesson, you will be able to:

- determine convergence or divergence of series with positive terms by direct comparison, limit comparison, or the integral test,
- recite a proof that the harmonic series diverges using the integral test.

REVIEW

- Review limits, sigma notation, and p-integrals and the integral comparison test from $\S 8.7$ (Improper Integrals).

Reading

- Read section 11.3. You may skip the proofs of the theorems.

Questions

(1) Fill in the blanks in the statement of the limit comparison test.

Limit Comparison Test. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be positive sequence such that

$$
\mathrm{L}=\lim _{n \rightarrow \infty} \frac{\mathrm{a}_{n}}{\mathrm{~b}_{n}}
$$

exists. Then

- If $L>0$, then $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\sum_{n=1}^{\infty} b_{n}$ converges .
- If $L=\infty \quad$ and $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} b_{n}$ converges as well.
- If $L=0 \quad$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges as well.
(2) Anne is trying to determine convergence of $\sum_{n=1}^{\infty} \frac{e^{-n}}{n}$ below. Grade her work.

$$
e^{-n}=\frac{1}{e^{n}}<1
$$

$$
\begin{aligned}
& \text { So use the comparison test. } \\
& \qquad \frac{e^{-n}}{n}<\frac{1}{n}, \quad \sum_{n=1}^{\infty} \frac{e^{-n}}{n}<\sum_{n=1}^{\infty} \frac{1}{n} \\
& \text { So } \sum_{n=1}^{\infty} \frac{e^{-n}}{n} \text { diverges. } \begin{array}{l}
\text { Harmonic } \\
\text { Series } \\
\text { diverges }
\end{array}
\end{aligned}
$$

SOLUTION: Anne's answer is incorrect because she used the comparison test in the wrong way: the harmonic series diverges, but that doesn't mean that a smaller series diverges as well.
(3) Carefully write a solution to the problem you just graded.

Solution: Consider instead

$$
\frac{e^{-n}}{n}=\frac{1}{n e^{n}}<\frac{1}{e^{n}}
$$

Then we may compare it to the series

$$
\sum_{n=1}^{\infty} \frac{1}{e^{n}}
$$

This series is geometric, and converges. We have

$$
\sum_{n=1}^{\infty} \frac{e^{-n}}{n}<\sum_{n=1}^{\infty} \frac{1}{e^{n}}
$$

so this series converges as well.

