READING ASSIGNMENT 13 NAME: SOLUTIONS
§11.3 (Series with Positive Terms) Due 23 July 2018

LEARNING OBJECTIVES

By the end of this lesson, you will be able to:

e determine convergence or divergence of series with positive terms by direct comparison, limit compar-
ison, or the integral test,

e recite a proof that the harmonic series diverges using the integral test.

REVIEW

e Review limits, sigma notation, and p-integrals and the integral comparison test from §8.7 (Improper
Integrals).

READING

e Read section 11.3. You may skip the proofs of the theorems.

QUESTIONS

(1) Fill in the blanks in the statement of the limit comparison test.

Limit Comparison Test. Let {a,,} and {b,,} be  positive sequence such that
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exists. Then
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o If L= and Z an converges, then Z by converges as well.
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oIf L=0 and Z by, converges, then Z an converges as well.
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(2) Anne is trying to determine convergence of Z eT below. Grade her work.
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SOLUTION: Anne’s answer is incorrect because she used the comparison test in the wrong way: the
harmonic series diverges, but that doesn’t mean that a smaller series diverges as well.

(3) Carefully write a solution to the problem you just graded.

SOLUTION: Consider instead

e ™ 1 - 1
n mnet en
Then we may compare it to the series
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This series is geometric, and converges. We have
- e " &= 1
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so this series converges as well.



