1910 Final Exam Review

Find the area enclosed by the curves

$$
\begin{aligned}
& y=\sin (x) \\
& y=\cos (x)
\end{aligned}
$$

for $0 \leq x \leq \pi / 2$

Does the series converge or diverge?

$\int^{1} \quad 2$
 $d x$
 $\left(x^{2}+1\right)(x+1)$

Does the series converge or diverge?

$$
\int \frac{1}{x^{2} \sqrt{x^{2}+1}} d x
$$

Does the series converge or diverge?

Find b such that the arc length of the curve

$$
y=\frac{2}{3} x^{3 / 2}
$$

from $x=0$ to $x=b$ has
length $14 / 3$

Find the interval of convergence

$$
f(x)=\sum_{n=1}^{\infty} \frac{3^{n}}{n}(x-1)^{n}
$$

Find the interval of convergence of $f^{\prime}(x)$

$$
f(x)=\sum_{n=1}^{\infty} \frac{3^{n}}{n}(x-1)^{n}
$$

Does the sequence converge or diverge?

Does the sequence converge or diverge?

$$
a_{n}=\frac{n^{2}+2 e^{n}}{n^{3}+e^{n}}
$$

$\int \cos (\sqrt{x}) d x$

Does the series converge or diverge?

Find the Maclaurin series

$$
f(x)=\int_{0}^{x} \frac{1}{1+t^{4}} d t
$$

