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For a fixed integer d > 2, consider the family of polynomials Py (z) = A (1 + g)d,
where A is a complex parameter. In this work, we study the location of parameters A
for which Py 5 has an attracting cycle of a given length, multiplier, and combinatorial
type.

Two main tools are used in determining an algorithm for finding these parame-
ters: the well-established theories of external rays in the dynamical and parameter
planes and Teichmiiller theory. External rays are used to specify hyperbolic com-
ponents in parameter space of the polynomials and study the combinatorics of the
attracting cycle. A properly normalized space of univalent mappings is then em-
ployed to determine a linearizing neighborhood of the attracting cycle.

Since the image of a univalent mapping completely determines the mapping, we
visualize these maps concretely on the Riemann sphere; with discs for feet and curves
as legs connected at infinity, these maps conjure a picture of fat-footed spiders.
Isotopy classes of these spiders form a Teichmiiller space and the tools found in
Teichmiiller theory prove useful in understanding this Spider Space. By defining a

contracting holomorphic mapping on this spider space, we can iterate this mapping



to a fixed point in Teichmiiller space which in turn determines the parameter we
seek.

Finally, we extend the results about these polynomial families to the exponential
family E)(z) = Ae*. Here, we are able to constructively prove the existence and

location of hyperbolic components in the parameter space of F,.
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Chapter 1

Introduction

Holomorphic dynamical systems contain structures which are understood through
a rich interplay between complex analysis, combinatorics, and topology. One such
structure is the Mandelbrot set, which was probably the most widely recognizable
mathematical object of the twentieth century. Since the first pictures of the Mandel-
brot set appeared twenty-five years ago, many people have studied various aspects
of this set and continue to this day to discover new problems related to it ([20]). To
this day, the main open conjecture is the local connectivity of the Mandelbrot set.
The most satisfying treatise on complex dynamics is the Orsay notes of Douady and
Hubbard [9]. In these notes, we see the roots of the interplay between various fields
in trying to understand the Mandelbrot set.

One important question related to the Mandelbrot set is the question of which
rays land, and where these rays land? Unless you are Douady or Hubbard, this can
sometimes be a challenge to determine landing points. Thus, different techniques

have been developed to answer this question. For instance, the internal addresses



described by Schleicher [29] give a very elegant method of relating external angles to
kneading sequences of hyperbolic components. A different point of view and answer
can found in the Spider algorithm in [15]. Given a rational angle 6, the Spider
algorithm produces a sequence of parameters that converges a Misiurewicz point or
the center of a hyperbolic component at which the external ray Ry lands. Thus, the
Spider algorithm identifies hyperbolic components by locating the unique parameter
¢ for which the critical orbit is periodic and has assigned combinatorics in the sense
that the dynamic ray of angle # lands at the boundary of the Fatou component
containing the critical value. A natural extension of the Spider algorithm is an
algorithm which converges to the other parameters inside the hyperbolic component
determined by 6. We now make this more precise.

Let W be the hyperbolic component of the Mandelbrot set determined by 6
and let D denote the open unit disc. Recall that there is an analytic isomorphism
X : W — D given by x(c) = (P2V)(20), where 2, is any of the points of the unique
attracting cycle for P.(z) = 2? + ¢. So, by specifying # € Q/Z and a complex
number p satisfying 0 < |p| < 1, is there a method for determining the parameter
c and the periodic point z;? By modifying the Spider algorithm, it is possible to
determine this information. In fact, this modified Spider algorithm simultaneously
finds this parameter and a parameterization of the linearizing neighborhood of the
attracting periodic cycle. In particular, the algorithm produces two sequences of
complex numbers: the first sequence converges to the correct parameter and the
second converges to one of the points of the unique attracting cycle for z — 22 + c.

In fact, we will describe this modified Spider algorithm in the more general setting



of unicritical polynomials of arbitrary degree, working with the family of polynomials
Py(z) = A(1+ %)% and their bifurcation diagrams, By. Since these polynomials are
affine conjugate to the polynomials Qg.(z) = 2% + ¢, we can transfer the results
back to the bifurcation diagrams for Q4. (known as Multibrot sets.) The reason
we work with Py, is that these polynomials converge dynamically to the family
E\(z) = Xe*. Hence, the modified Spider algorithms for the polynomial families can
be generalized to the infinite degree case. These spider algorithms are versions of
Thurston’s algorithm as explained in [10].

Working in arbitrary degrees introduces some added difficulties, most notably
the fact that for d > 3, x : W — D is not an analytic isomorphism, but rather a
d — 1 covering map. Hence, we must identify d — 1 parameters in each hyperbolic
component and have a way of distinguishing these parameters. So, we must solve

the following:

Question 1. Let d > 2 be an integer, § € R/Z periodic under 6 — df of period N,
and p € {z € C:0 < |z| < 1}. With this data, can we locate the parameters A such

that Py 4(z) = A (1 + g)d has an attracting cycle of length N with multiplier u?

The following results from Chapter Six answer this question affirmatively.
Theorem 6.3.7 Suppose that 6 is periodic under 6 — df and that 0 < |p| < 1.
Then, the spider mapping on spider space has a unique fized point which can be
found under iteration.
and
Corollary 6.3.8 With 0, as in Theorem 6.3.7, there exist d — 1 polynomials

Pya(z) = A (1 + g)d such that Py4 has an (attracting) cycle of length equal to the



period of 0 with multiplier p, and having the specified combinatorics from 6.

However, the true power of Spider Theory is realized when we extend the algo-
rithm to work for the exponential family E)(z) = Ae?. It has been conjectured for
the past 20 years that the hyperbolic components of the parameter space for the
exponential family exist and are encoded by external addresses. The difficulty in
proving their existence is the lack of a center for these components. The typical
method of locating the center of a hyperbolic component (where the map is post-
critically finite) cannot work for exponential maps as there are no critical points and
the singular value can never be periodic.

Hence, the work in the early chapters is a prelude to the following application of
Spider theory to exponentials. The construction of Spider Space in the polynomial
case is as general as possible so that only slight modifications are needed to create
Exponential Spider Space and Spider mappings on that space. The main results are
Theorem 7.5.4 The exponential spider mapping has a unique fized point [pe] which
1s found under iteration of the spider mapping.

and
Theorem 7.5.5 For any N > 3 and any bounded periodic external address
0 = 5081 ..., there is a hyperbolic component W in the parameter space for E\(2)
such that for each A € W, the hair hyy lands at the characteristic repelling periodic
point on the boundary of the Fatou component containing 0. Any such hyperbolic
component is uniquely specified by the sequence 6.

Results concerning the existence of hyperbolic components of the exponential

family have been recently announced by Devaney, Jarque, and Fagella ([11]) and



Schleicher ([31]). Our result gives existence and uniqueness of the coding of the
components and allows us to locate the positions of attracting parameters anywhere
in parameter space.

Finally, the Spider algorithm defined in this thesis is a version of Thurston’s
algorithm as mentioned earlier with the major difference being that our maps are
not post-critically finite. Most work done with Thurston-type algorithms of this
nature have relied on this finiteness of the critical orbit. In a preprint, Jiang, Cui,
and Sullivan ([6]) have also announced a Thurston algorithm for geometrically finite
rational maps which are not post-critically finite.

The Spider algorithm is a simplified version of Thurston’s topological charac-
terization of rational mappings [10] and the underlying technique used is iteration
on an appropriate Teichmiiller space. The idea of iteration on Teichmiiller spaces
goes back to Thurston. In fact, two very important theorems rely on this technique:
the topological characterization of rational mappings and the hyperbolization of
3-manifolds. A detailed discussion of these theorems and the background informa-
tion can be found in a paper by McMullen [25] and a forthcoming manuscript by
Hubbard [14].

In answering Question 1, we will also create an iteration on a Teichmiiller space,
but in contrast to the above theorems, this Teichmiiller space is infinite dimensional
and hence produces many challenges not found in the original Spider algorithm.

The following example illustrates the motivation behind the description of the
modified Spider algorithm. Consider the polynomial Py(z) = A (1 + %)3, with \ ~

—0.0394 + 1.5¢. This polynomial has an attracting cycle of length 3 with multiplier



i = 0.8 and the parameter A lies in the hyperbolic component of B; encoded by the

parameter ray Roqp where 6 = 1/26. See Figure 1.1.
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Figure 1.1: The bifurcation diagram for z — A (1 + %)3 with parameter rays indi-
cated.

By a theorem of Koenigs (Theorem 2.1.1), there is a neighborhood U of the
attracting cycle such that Py is conformally conjugate to multiplication by . That
is, there is a conformal map ¢ : U — D such that ¢ o P{® o ¢ !(2) = pz. The
domains U, Py»(U), and P;3(U) form the feet of a spider and its legs approximate
the indicated dynamic rays landing at the repelling fixed point in the boundary of
the Fatou components containing the critical orbit. See Figure 1.2.

This example serves as the prototype for the (fat-footed) Spiders we define in
Chapter 3. Using combinatorial information coming from the angle # and the an-

alytic information of the multiplier u, we construct a space of univalent mappings,
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Figure 1.2: Fixed spider in the filled-in Julia set of P3 , with A ~ —0.0394 + 1.5z.

called Spider Space. Since the image of a univalent mapping determines the map-
ping, there is a concrete visualization of these mappings in which they closely re-
semble spiders with long legs and fat feet.

Let zp be the periodic point in the connected component of the Fatou set that
contains 0 and let z; = Py(29) and zo = Py(z1). Let Uy be a linearizing neighborhood
of zg which contains 0 on the boundary and set U; = Py(Up) and Uy = Py(U;). These
neighborhoods serve as the feet of a spider. To define the legs of the spider, let 7,
be any continuous curve that connects 0 to oo and agrees with the dynamic ray Ry
near infinity; set y; = Px(7Y) and 2 = Py(71). See Figure 1.2. Then, U?:o(U]’ U~,)
forms a spider for this mapping; we think of {oc} as a small body.

Now, the key characteristic of such a spider is that it is invariant under P; !



in the following sense. Let Us be the pre-image of U; that has 0 on its boundary
and let 7y be the pre-image of 7; which leads to 0. Similarly, denote by U, the
pre-image of U, containing A = P,(0) and let 4; is the pre-image of v, leading to .
Finally, U, will consist of the pre-image of U, containing Py()\) and restricted to the
subdisc containing Py(\) on its boundary. Note that this new spider is isotopic to
the old spider relative to the feet. Hence, we have a fixed point in the Spider Space
of isotopic spiders under the mapping defined by taking inverse branches of P,.
This mapping is called a Spider mapping. From this example, we create a general

algorithm which converges under iteration to the parameterization we seek.

1.1 Organization of the Thesis

The basic theory of the iteration of holomorphic mappings is presented in Chapter
2. By now, this material is well-known and many references on the subject exist,
including but not limited to [9],[21], [7], and [32]. After a general introduction,
the focus switches to the polynomial family Py, (z) = A (1 + g)d. In particular, we
describe the structure of parameter space that will be needed for the modified Spider
algorithm.

In Chapter 3, we present the necessary background from complex analysis, es-
pecially that of Teichmiiller spaces. While this chapter could possibly be developed
and interwoven in the text as needed, it serves as a contrast to the more intuitive
Teichmiiller space used in the thesis.

The bulk of the results begin with Chapter 4, in which we define Spider Space as

a space of univalent mappings defined using the data € and p. In the same chapter,



Spider mappings are defined as branches of the inverse to P, ». The modified Spider
algorithm is the iteration of a Spider mapping and we show that a fixed point of
a spider mapping produces the parameterization of the attracting cycle sought in
Question 1. As it turns out, for each Spider Space, there are infinitely many spider
mappings defined and we classify them into finitely many distinct classes. In fact,
we show that there are d — 1 classes of spider mappings and each class determines
a unique parameter that answers Question 1.

In Chapter 5, Spider Space is shown to be isomorphic to a classical infinite
dimensional Teichmiiller space and hence has the structure of an analytic Banach
manifold. We also identify the tangent space to Spider Space.

In Chapter 6, we prove the modified Spider algorithm converges to a fixed spider.
We show that the derivative of the spider mapping is strictly contracting with respect
to a norm on the tangent space to Spider Space, which, combined with an invariant
subspace of spiders, allows us to iterate to a fixed point of the spider mapping
starting with an arbitrary point of Spider Space. The main results concerning
polynomials are proved in Chapter 6. The dynamics of the exponential family and

the Exponential Spider algorithm in the periodic case are discussed in Chapter 7.



Chapter 2

Dynamical Preliminaries

In this chapter, we gather the main results from the iteration of holomorphic map-
pings of the Riemann sphere that will be used in this thesis. We begin with rational
dynamics, in particular, focusing on the dynamics of polynomials. These are now
classical results and most proofs will be omitted. Sketches of proofs will appear

where such arguments illuminate the ideas found later in this work.

2.1 Rational Dynamics

2.1.1 Local Picture

Consider the mapping
f(2) = pz+ag2® +as2® + . ..

holomorphic in a neighborhood of the origin, having z = 0 as fixed point and

w = f'(0) as multiplier. The following result, due to Koenigs, is central to the

10
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iteration of holomorphic mappings.

Theorem 2.1.1. (Linearization) If the multiplier u satisfies |u| # 0,1 then there
exists an injective holomorphic mapping ¢ defined in a neighborhood of the origin,
so0 that (p=' o f o p)(2) = pz. Furthermore, ¢ is unique up to multiplication by a

nonzero constant.

Proof. See [21] . O

The map ¢ is called the linearizing map at the fixed point 0. Often, we normalize
the linearizing map by assuming that ¢'(0) = 1. A fixed point is called attracting if
lu| < 1 and repelling if |p| > 1.

Of course, we transfer this result to any fixed point in the plane. Thus, we get
a very nice local picture in which points in a neighborhood of an attracting fixed
point tend to this fixed point under successive iteration of our mapping. This thesis
will focus on the study of attracting periodic points and their linearizing maps.

Now, we consider the two cases not covered by the Koenigs’ theorem. In the case
|| = 1, we say that the origin is an indifferent fixed point. Here the local situation
is rather complicated. If y = > where § € R/Z, then the fixed point is called
parabolic and f is linearizable (in the same sense as in Theorem 2.1.1 ) if and only
if  satisfies a precise number theoretic condition. The theory of indifferent fixed
points is used very little in this thesis and so we say nothing more here on this very
interesting topic.

Finally, we also have the case in which p = 0. In this case, we say that f has a

superattracting fixed point at the origin. There is a smallest k£ > 1 such that

f(2) = ap 2" + a2 4
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where ap # 0. It easy to see that locally, f is a map of degree k. Thus, it is natural
to attempt to conjugate f to the map z — z*. This is precisely what Béttcher’s

theorem states is true.

Theorem 2.1.2. (Bottcher’s Theorem) Suppose that

1
b+l L.

f(2) = ap2® + apy12 ,

where k > 2 and ay, # 0. Then, there is an injective holomorphic mapping ¢ defined
in a neighborhood of the origin, so that @o fop~1(z) = 2*. Furthermore, ¢ is unique

up to multiplication by a (k — 1) root of unity.

Note that the same results follow through for periodic points of mappings. In
particular, if p is a periodic point of period N, then we define the multiplier of
the periodic orbit of p to be u = (f°V)'(p). Then, O = {p, f(p), ..., f*N(p)} is an

attracting cycle for f if |p| < 1.

2.1.2 Global Picture

The work of Fatou and Julia in the early 20th century led to understanding the
global behavior of the iteration of a holomorphic mapping of the Riemann sphere,
C=Cu {oc}. In fact, the sphere breaks up into two complementary subsets: the
open Fatou set €y in which orderly dynamics occur, and the Julia set J; in which the
behavior of f is chaotic. Understanding the dynamics of f resides in the topology
and geometry of the Julia set and classifying the components of the Fatou set. The
most general way of defining the Fatou and Julia sets comes from the theory of

normal families.
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Definition 2.1.3. (Normal Families)

A family of analytic functions, defined a common domain U, is called a normal
family if every sequence in the family contains a subsequence that either converges
uniformly on compact subsets of U, or converges uniformly on compact subsets of U

to infinity.

Definition 2.1.4. (Fatou and Julia Sets)
A point z € C belongs to the Fatou set €y if there is a neighborhood U of z on which
the sequence of iterates {f°"}52, forms a normal family. The Julia set Jy is the

complement of €.

In order to determine the Fatou set, it will be useful to have a criterion for being

normal, since the definition of normal family can be difficult to verify.

Theorem 2.1.5. (Montel’s Theorem) Let {fy : U — Claca be a family of
holomorphic functions on an open set U C C. If the family {fa} omits at least three

values in C, then {fa} is normal on U.
We now gather some basics results about Fatou and Julia sets.
Proposition 2.1.6. (Properties of Julia Sets)

1. The Fatou and Julia sets are completely invariant sets. That is, f(J;) =

Jr, F7HTp) = g, [(Q) = Qp, [7H () = Q.

2. Jy 1s non-empty and perfect. FEither it has no interior or it is the entire

Riemann sphere.

3. J; equals the closure of the repelling periodic points.
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For the rest of this section, we specialize to the case of the iteration of a poly-

nomial P.

Definition 2.1.7. The filled-in Julia set of P is the set
Kp ={z € C|P"(z) » 00 as n — oo}
of points with bounded forward orbits.

This definition fits very naturally with the general theory as the next result

indicates.
Proposition 2.1.8. Jp is the topological boundary of Kp.

See Figures 2.1 - 2.2 for pictures of Julia sets.
«%

b B “‘“%._g

x} \:” {)Qo -»

o}“}“(\i

o 2

Figure 2.1: The Julia and filled-in Julia sets for z — 2% — 1.

We now see that critical points play a major role in complex dynamics.

Theorem 2.1.9. (Fatou)

(a) All critical points (in C) of P belong to Kp if and only if Kp is connected.

(b) If no critical point of P lies in Kp, then Kp is a Cantor set and there is a
homeomorphism ¢ : Kp — ¥4, where (34,0) is the one-sided shift on d symbols,

such that ¢ o P = o o ¢.
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Figure 2.2: Julia and filled Julia sets for z — 22 + 0.278125 + 0.529375i.

2.1.3 Dynamic Rays

In this section, we will introduce dynamic and parameter rays, which give a beautiful
combinatorial description of the dynamic and parameter planes of polynomials. We
know [21] that for every parameter ¢ € C there is a neighborhood U of infinity and
a Bottcher map ¢, : U — U, fixing infinity, such that ¢, o Qg0 ¢! = 2%. This
follows from the fact that infinity is always a super-attracting fixed point of any

polynomial. Defining a Green’s function g. on U by
9c(2) =log|de(z)| for z € U,

we have the following functional equation

_ QC(Qd,c(z))
el ="

From this, it follows that the Green’s function extends continuously to C — Kq,.

and tends to zero as z approaches Kq, . Hence, we define gc(2) :=0for z € Kq,.-
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For ¢ > 0, the set {z € C: g.(z) = t} is called an equipotential curve of potential t.

Next, note that g. has a critical point p whenever p is a critical or precritical
point of QQg.; in other words, if Q;{“c(p) = c for some integer k > 1. If Kg,_ is
connected, then the critical point lies in the filled-in Julia set, and hence, g, has no
critical points outside of K, .. If Kg, , is not connected, then g, has infinitely many
critical points. This means that the Bottcher map ¢. can be continued analytically
when g.(z) > g.(0). In particular, this means that if K¢, is connected, then ¢,

extends to a conformal mapping from C - Kq,,. onto C-D.

Definition 2.1.10. (Dynamic Rays)

Let ¢ be a parameter for which Kq,, is connected. The dynamic ray of angle 0 is

the set Ry = {¢7 ' (re*™ ) : r > 1}.

If the limit

li -1 2mif
lim 67" (re*")

exists, then we say that the ray Ry lands at its limit point. A ray Ry is called
periodic if the angle € is periodic under multiplication by d.

The following result is due to Sullivan, Hubbard, and Douady. See [21].

Theorem 2.1.11. (Periodic Rays Land)
Consider a parameter with a connected Julia set. Then, every periodic and preperi-
odic dynamic ray lands at a repelling or parabolic point which is periodic or prepe-

riodic, respectively.

We also have
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Theorem 2.1.12. For a connected Kq, ,, every periodic or preperiodic repelling or
parabolic point in Jg,  is the landing point of at least one and at most finitely many
periodic or preperiodic dynamic rays. Furthermore, if Kq,  is locally connected,

then the number of rays landing at z € 0Kq,, equals the number of components of

KQd,c - {Z}
A very important property of dynamic rays is the following.

Lemma 2.1.13. The dynamic ray Ry lands at z € 0Kq,, if and only if Ray lands
at Qac(2).

This lemma and the previous theorems show that there is a notion of periodicity
of rays landing at a repelling or periodic point. Let O be a repelling or parabolic
periodic orbit and let Ry be a dynamic ray landing at one of the points of the orbit.
It is possible for the period of the orbit and the period of the angle 6 to be different.
For example, in Figure 2.3 the 6 has period two while the ray Ry lands at a fixed

point in the Julia set. We define the ray period of O to be the period of the angle 6.

2.1.4 Orbit Portraits

In this section, we introduce orbit portraits, which we use in defining spider map-
pings. A similar treatment of orbit portraits may be found in [22] or [12]. Orbit
portraits give a combinatorial description of Julia sets and are used to study the
landing properties of rays in the parameter plane. We will use them to show us
where to look for the critical orbit of a mapping with an attracting cycle. We have

in mind the polynomials f.(z) = 2% + ¢, with d > 2, when defining orbit portraits,
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1/8

Figure 2.3: Jp for P(z) = 2® + 0.155 + 1.025¢ along with dynamic rays.

but the exposition works just as well for the polynomials z — A (1 + g)d . Figures 2.4
and 2.6 show rays landing on the Julia sets of quadratic polynomials. Later, we

will draw a caricature of the landing pattern using orbit portraits.

Definition 2.1.14. (Orbit Portraits)
Let A; be the set of angles for a periodic orbit O = {z1,...,zn5} of f. for which the
dynamic rays of angles 0 € A; land at z;. The set P = {Ay,... ,An} is called the

orbit portrait of O with respect to f..

A portrait P = {Ay,..., Ay} is called essential if each A; contains at least two
angles; otherwise, it is non-essential. If the period of all angles in A; U---U Ay
is equal to N, then the portrait is called primitive; otherwise it is non-primitive.
Note that the condition of being primitive means that the period of the rays and

the period of the orbit are the same.
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Also note that for d = 2, all parabolic parameters have an essential portrait.
This is not true for d > 2, as there are parabolic parameters at which only one ray
lands. See Figure 1.1.

The sets Ay, ..., Ay are pairwise unlinked if, for each i # j, the sets A; and A,

are contained in disjoint sub-intervals of R/Z.

6515 3415
i
k“v.«;} ‘__HE"*?‘ 52‘(-&.4 ﬁﬁ"f‘iﬂw

12/1%
915

Figure 2.4: Julia set for z — 22 — 1.25, showing the four rays landing at a period
two parabolic cycle.

For example, Figure 2.4 shows a parabolic orbit of period two and ray period

four. The associated orbit portrait is

P={{s s 8l

Figure 2.5 shows an orbit of period four and ray period four with

P 3 4 6 8 12 1 9 2
- 1571571157157 1157157 15715 [’
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Figure 2.5: Julia set for z — 2%+ ¢, with ¢ &~ —0.1571 + 1.0327:. Shown are the four
pairs of rays landing on the repelling periodic orbit on the boundaries of the Fatou
components containing the attracting cycle.

and Figure 2.6 shows an orbit of period two and ray period six, with
- 22 25 37 11 44 50
- L163763763f7163°63°63) [
Orbit portraits are characterized by the following properties.

Lemma 2.1.15. (Properties of Portraits)

Let P = {Ay,...,An} be the orbit portrait of a periodic orbit O for f.. Then,

1. Each A; is a finite subset of Q/Z.

2. For each i modulo N, the d—tupling map t — dt(mod Z) carries A; bijectively

onto A; 1 preserving the cyclic ordering on the circle.

3. All angles in A1 U ---U Ay are periodic, of same period, under the d—tupling

map.

4. The A; are pairwise unlinked.
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Figure 2.6: Julia set for z — 22 + ¢, with ¢ ~ —1.1343 + 0.2353i, showing the six
rays landing at a period two repelling orbit.

Our interest with orbit portraits lies in knowing what happens to landing pat-
terns in the Julia sets as we perturb a mapping. In visualizing landing patterns of
rays, it is useful to give a schematic diagram of the orbit portrait.

We can compactify the plane by adding the circle {e*™ oo : t € R} at infinity.
Inside of this closed (topological) disc, we can form the diagram D and illustrate the
orbit portrait P by drawing all the rays joining O to the circle at infinity. These rays
will be disjoint, except each point in O is a common endpoint of rays. Figure 2.7
shows various schematic diagrams. Of fundamental importance is the fact that the
diagram D deforms continuously, and thus preserves its topology, as we move the
parameter ¢, as long as the orbit O remains repelling. This stability follows from

the following result.
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Lemma 2.1.16. Let ¢y be a parameter and zy a periodic point of f., of exact period
N such that the multiplier uu(co, z9) # 1. Then, there is a neighborhood U of co and
a holomorphic function z : U — C such that z(c) is a periodic point of f. of exact

period N for each ¢ € U and z(cy) = 2.

Proof. Let g(c,z) = foN(2) — 2. Clearly, g is holomorphic in ¢ and z and has a zero
at (co, z9). Further, 2 g(co, z) # 0 since p(cg, 20) # 1. Thus, the Implicit Function
Theorem implies that there are neighborhoods U of ¢y and V of 2y and a holomorphic

function z : U — V such that g(c, z(c)) = 0. That is, z(c) is periodic of exact period

N force U. O

Figure 2.7: Schematics for the orbit portraits associated with Figures 2.4 ; 2.5, 2.6.

In Chapter Four, we analyze orbit portraits in terms of the lengths of the arcs
that the rays make with the circle at infinity. We make this notion precise here.
First, as is usual in holomorphic dynamics, we measure angles in terms of fractions
of a full turn. Thus, angles are elements of R/Z = S'. Further, since S = [0,1),
the quantity e?™, for § € S', has a well-defined meaning. Next, we define intervals
on S’ Let 0, 6, € S' and define (;,6,) to be the open connected component of

S' — {6,605} composed of angles we reach as we travel from 6; to 6, in a positive
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direction. We write §; < 6; < 6 if 6; € (6;,6y). Finally, the length of an interval

I St is denoted by £(I), where £(S') = 1.

Definition 2.1.17. (Complementary Arcs)
Let A={b,,...,0} be an element of orbit portrait P, with 0 < Oy < - -+ < O < 0.

We call the intervals (61,02), (02,03), ..., (0, 01) the complementary arcs for A.

Lemma 2.1.18. Let P be an essential orbit portrait. For any A; € P, all but one
complementary arc for A; is carried diffeomorphically by the d—tupling map onto a
complementary arc for A;y1. The remaining complementary arc for A; has length
greater than 1 — 1/d and its image under the d—tupling map covers one particular

complementary arc for A;y1d times.

Proof. Let I C S'be a complementary arc for A; of length less than 1/d. By part (2)
of Lemma 2.1.15, the d—tupling map carries I bijectively onto an arc dI of length
d¢(I), bounded by two points of A;,;. Since the the cyclic ordering is preserved
under the d—tupling map, this image arc does not contain any other point of A4;,.

Hence, the image arcs cannot overlap.

2.2 Dynamics of P,

In this section, we discuss the dynamics of the mappings Py (z) = A (1 + g)d for
A € C. In particular, we analyze the bifurcation diagram B, for P, ). Figures 2.8-

2.11 display By for various d.
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Figure 2.8: The bifurcation diagram Bj.

W
EH

»*

Figure 2.9: The bifurcation diagram B,.
2.2.1 Parameter Plane for FP;)

First, we describe some of the properties of the parameter plane for the family Py .
We will also indicate the relationship with the parameter plane for the exponential
family. The d** bifurcation set, By, is the set of parameters A for which the orbit

P7,(0) is bounded. Recall the following fact.

Theorem 2.2.1. If A € By, then the filled-in Julia set K4 of Py is connected.

Otherwise, K4 is homeomorphic to a Cantor set.

Proof. This follows immediately from Theorem 2.1.9 since each Py, has only one
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Figure 2.10: The bifurcation diagram Bsg.

Figure 2.11: The bifurcation diagram Bsy.
critical point in the plane. O
We now describe the components of B,.

Definition 2.2.2. A polynomial or entire mapping is hyperbolic if every critical

point is attracted by an attracting periodic cycle.

Definition 2.2.3. A component W of the interior of By is called a hyperbolic

component if Py is hyperbolic for some, and hence all A € W. We say that a
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hyperbolic component W has period N if Py has an attracting cycle of period N
for xe W.

Set

C4% = {\| Py, has an attracting cycle of period N}

and

Cy = {A\|E\ has an attracting cycle of period N}.

Lemma 2.2.4. Let W be a connected component of C%. Then W is an open subset
of By and there is an analytic map z : W — C such that z(\) is an attracting

periodic point of period N, for all X € W.

Proof. By definition, there is a \g € W with an attracting orbit of period V. Since
P, has only one critical point, it follows that P, ,, has a unique attracting orbit
of period N. By the analytic dependence of parameters on the multiplier, there is a
map z : W — C with z()\) having an attracting cycle of period N. Also, this same
lemma shows that every A € W has a neighborhood U such that all A € U are
hyperbolic. Hence, W is open. Finally, if P, has an attracting orbit, then the orbit
of the critical point is in the basin of attraction and hence the orbit of the critical

point is bounded. Thus, A € By. So, W C By. O

From the above proof, we see that for a given d and A € C%,, the critical point —d
lies in a component of the basin of attraction of this cycle which contains one point,
denoted 2o = 2(}), of the attracting cycle. Set z;(\) = Pj (%), fori =1,... ,N—1.

Then ,we define the eigenvalue map
N-1

Xa: Ok =D by xa(N) = (L)) (=) = [ [ P'(=), (2.1)

1=0
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where D denotes the open unit disc. This map is clearly analytic since zo(\) varies

analytically with .
Proposition 2.2.5. (Multiplier Map)

1. C¢ is bounded by a cardioid-like curve and x;' : D — C¢ is an
analytic homeomorphism which extends to a homeomorphism D — 6?.
2. limg,eoXx; = X' : D — Oy where x~Y(p) = pe™ and x is the

multiplier map for the exponential family.

Proof. Note that A € C¢ and x4()\) = p imply

A (1 + f)d and X (1 n g)d_l = .

d
Thus,
z u
=—— or =
P =Ty 2/d T wd
and hence
_ 7
A =Xy 1(#) = a1
(1 + ﬁ)

is an inverse for y4. As indicated earlier, x4 is analytic.

The multiplier map 4 extends continuously to the boundary of C¢ to a map
Xa : U‘f —D.If) e 66‘11, then Py ) has a fixed point z, with derivative of modulus 1,
and X,4(2x) = P 5(2x)- So, X, extends continuously to an inverse X, of X, Hence,
X;l is a homeomorphism.

In order to prove the second statement, set u = re® € D and choose a branch of
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the logarithm defined on C — {z < 0}. Then,

d-1
: P o B d
o (1 7)< fim(a—os ()

1
= lim(d—1) [logd ~ 5 log(d* — 2rdcosf + 1%)

d—oo
i Tim (d — 1) rsin 6
i lim(d—1)————
d—00 d—rcosf
= rcosf +irsinf
oy /,I:-
Thus,
d—1
lim (1 + L) — ot
d—oo d—p
and hence
lim x,;'(p) = lim % = pe k.
d—o0 d—o0 u
(1 + ﬂ)

Just as with the Mandelbrot set, we have the following:
Proposition 2.2.6. Any connected component W of C% is simply connected.

The next result found in [8] is a fundamental object of study in this thesis as we

will analyze the sheets of the following covering.

Theorem 2.2.7. Let W be a connected component of C% with N > 2. Then, the

eigenvalue map xq: W — C% is a (d — 1)-fold covering map ramified over 0.

We next give a result which shows that as the degree d increases, the number of

hyperbolic components of a given period increases.
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N—1 _

d
Proposition 2.2.8. For each N > 2, there are

-1 hyperbolic components in

the interior of By whose period divides N.

For example, in Bs, there are four hyperbolic components of period 3. These com-
ponents are the landing point of parameter rays of the form 17—3 in Figure 2.12.
We conclude this section by showing that the hyperbolic components of B, con-

verge to the corresponding hyperbolic components of the exponential family.
Theorem 2.2.9. (Dynamical Convergence to the Exponential)

1. If Ey has an attracting periodic point of period N, then there s a D such that

for d > D, Py has an attracting periodic point of period N.

2. For a fized A, if Py has an attracting periodic point of period N for infinitely

many d, then E\ has an attracting or parabolic periodic point of period N.

2.2.2 Parameter Rays

In this section we will discuss the complement of the bifurcation diagrams By. In
order to do this, we consider the polynomials Qu.(2) = 2% + ¢. Note that Qg is
affine conjugate to Py, with A = dc*~!, via the conjugacy v(z) = < + c¢. This
means that there is a (d — 1)-fold covering A\ = II(c) = dc¢®~! from the c—plane to
the A—plane. Let Mq = {¢[(Q},)(0) is bounded for all n} be the analogue to the

bifurcation diagram By; these are the so-called Multibrot sets. Then, the map
H|Md : Md — Bd

is a (d — 1)—fold covering space. Following the proof in [9] for the Mandelbrot set,

we can prove the following.
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Proposition 2.2.10. For each d, By is connected.

Proof. We let K, . denote the filled-in Julia set for ;. and we define the Green’s

function for K. by

Gael2) = Jim - 10g|Q,(2)]
Set Uy = {2z |Gac(z) > Guc(0)}. It is shown in [9] that there is a unique analytic
mapping
¢dc:Uge — C

which is tangent to the identity at infinity, conjugating Qq.(z) to z — 2¢. Also, see

Section 2.1. Now mimic the proof in [9] to show that the mapping
®y:C— My — C—D given by Oy(c) = Bac(c)

is an analytic isomorphism. Hence, M, is connected for each d, and since B; =

II(M,), it follows that B, is connected. O

Following the ideas found in the previous proof, we will construct an analytic
isomorphism ®; : C — B; — C — D that uniformizes the exterior of By. In analogy

to the polynomials (4., we define

1
Gd)\(z) m % lOg |P£)‘(Z)| and Ud,)\ = {Z |Gd,>\(z) > Gd,)\(—d)}.

=1
n—o0

Recall that v(z) = < + ¢ is the map conjugating Qg to Pyx. We define

Bar:Usr = C by dgr(2) = dac(v(2)),

which gives a uniformization of U, conjugating P, to the map z — 2% Now,

setting

Py(A) = (¢ap(0))4"
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we have the following.

Proposition 2.2.11. &, : C — By — C — D is an analytic isomorphism.

Proof. Since ¢41(0) = ¢ac(v(0)) = ¢ac(c), we have that ®4(\) = (D4(c))*". So, we

get the following commutative diagram:

C-M; = C-D
c—dcd—1 l J{zr—)zd_l

Since ®4 is an isomorphism, we have our result. O

The most significant rays are those of rational angle 6, as these rays are known
to land on the boundaries of the various B,. In fact, these rays are used in further

understanding the structure of By. In fact, we have the following structure theorem.

Definition 2.2.12. (Essential Parameters)
A parabolic parameter is called essential (respectively, non-essential ) if the associated

orbit portrait is essential (respectively, non-essential).

Definition 2.2.13. (Roots and Co-Roots)
Let W be hyperbolic component of By of period N. A parameter on OW with an
essential parabolic orbit of ray period N is a called a root of W. A parameter on

OW with a non-essential parabolic orbit of ray period N is a called a co-root of W.

Theorem 2.2.14. The parameter plane B, along with its parameter rays satisfy

the following:
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(1) Every periodic parameter ray lands at a parabolic parameter of By.
(2) Every non-essential parabolic parameter in By is the landing point
for exactly one periodic parameter ray.

(8) Every essential parabolic parameter in By is the landing point for
exactly two periodic parameter rays.

(4) Every preperiodic parameter ray lands at a Misiurewicz point.

(5) Every Misiurewicz point is the landing point of at least one preperi-
odic parameter ray.

(6) Every hyperbolic component of By has exactly one root and d — 2

co-T0018.

[Note: Parts (4) and (5) of the above theorem will not be used in this thesis, but

are included for completeness.]

Proof. The proof of this theorem really goes back to ideas that can be traced through
Douady-Hubbard, Milnor, and many others. For a complete proof in the case of the
parameter plane My, see [12]. The results there then carry over to our parameter

plane via the holomorphic covering map My — B, defined earlier. O

Taken together, the results of this section leads to the pictures of parameter rays

to B; and B, shown in Figures 2.12 and 2.13.

2.2.3 Size of B,.

For each d > 2, the connectivity locus B, is a compact subset of the plane, but the

diameter of these sets grows as d increases. This is in contrast to the Multibrot sets
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Figure 2.12: The bifurcation diagram B; and some parameter rays.

13485 WS

Figure 2.13: The bifurcation diagram B, and some parameter rays.

My, which for each d, are contained in the closed disc of radius 2 about the origin.
The growth of B, is, however, consistent with the fact that the B; converge to the
bifurcation diagram for z +— Ae?, which is unbounded. In this section, we show that
for a fixed d we can estimate the size of B; which will be useful later when we prove
the convergence of the modified Spider Algorithm .

First, we have the following sharper result about the size of the Multibrot sets

M.

Proposition 2.2.15. M, is contained in D (O,Qﬁ) , the closed disc about the
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origin of radius 24-1.

Remark 2.2.16. Note that this result shows that the Multibrot sets actually de-
crease in size as d increases, being contained in discs that approach the closed unit

disc.

Proof. Note that

1

e] > 2451 = |Que(0)] = | 4] = |el — [e] = Jel(Je|** — 1) > 24
Then, by induction, we have |Qj .(c)| > 241 for all n > 1. O
Corollary 2.2.17. B; C D(0,2d).
Proof. Recall that the covering map My — By is given by ¢ — \ = dc?~!. So,

L \d-1
ANEBy=>ceMy=|A=d|d*'<d (Qﬂ) — 9.

We also have a similar result for the filled-in Julia sets Kgq, .
Corollary 2.2.18. If c € My, then Kq,, C D (0, Qﬁ) .

Proof. 1f |z| > 941, then lz| > (2+ e)dlfl for some € > 0. By Proposition 2.2.15,

lc| < 27T < |2|. So,

Quc(2)| = |2 = le] > |2]" = 2]

= |z (lz]*" = 1)
> 14 [((2+e)d1—1)d_1—1]
= (1+¢)lzl.

Then, by induction, |Q7 .(2)| > (1+¢€)"|z|, which converges uniformly to infinity. [
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It is not true that the filled-in Julia sets Kp,, for A € By are bounded. In fact,
0 € By and Kp,, = C. However, if A € By is bounded away from 0, then Kp, , is

bounded.

Proposition 2.2.19. Fiz e > 0. If A € By and |\| > ¢, then Kp, , is contained in

2d\ 41
the disc centered at —d with radius d (—) .

€

2d

1
d—1
Proof. If |z+d| > d (—) , then |z 4+ d| > (14 6)d for some § > 0, since € < 2d.
€

So,

Al €
|Pd,>\(z)|:ﬁ\z+d|d > E‘Z-Fd‘d

- %\z—k d*Yz + d|

Next,

|Pix(z) +d| > |Pix(z)|—d
> 2|z+d| —d
> |z4+d+(1+0)d—d

= |z +d|+dd.
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Then,
2 Al d € d—1
[Pia(2)| = WIPd,A(Z) +d|* > EIPd,A(Z) +d|"7 |Paa(2)z +d
€ 4.1 (2d
= 2|z +d|+24d.

Continuining inductively, we find that | P, (z)| > 2[z + d| + 2ndd. O



Chapter 3

Analytic Preliminaries

3.1 Introduction

In this chapter, we gather together some of the analytic notions that will be used
throughout the thesis, including some basic theory of Teichmiiller spaces, quadratic

differentials, and univalent mappings.

Definition 3.1.1. (Univalent Function)
If U is an open subset of C, we say that f : U — C is univalent iof f s analytic and

injective on U. Note that U need not be connected.

3.2 Quadratic Differentials

In this section, we discuss spaces of quadratic differentials on Riemann surfaces. As
we will see later, the complex analytic structure of Tiechmiiller space is intimately

related to holomorphic quadratic differential forms. Let X be a Riemann surface.

37
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Definition 3.2.1. (Quadratic Differentials)
A quadratic differential ¢ on X is (2,0)—tensor given locally by q = q(z)dz*. We

say that q is holomorphic if q(2) is holomorphic.

Remark 3.2.2. Another way to define a quadratic differential is to note that it is

a section of the square of the canonical bundle on the Riemann surface X.

If g(z) # 0, then there is a local chart w near x for which ¢ = dz?. This chart is

unique up to translation and sign and it is given locally by

w = [ va

Note here that ,/g is a holomorphic 1-form. If g(z) = 0, then there is a local chart
in which ¢ = 2"dz?, for some n > 0.
A quadratic differential determines a metric |q| on X since locally, |g(z)dz?| =

lg(2)|dzdy. We say that a quadratic differential is integrable if

lall = /X gl < . (3.1)

Let Q(X) denote the Banach space of integrable quadratic differentials on X with
the L' —norm above. The norm of ¢ is simply the total area of ¢ on X with respect

to the metric |g|.

Theorem 3.2.3. Let X be a Riemann surface of finite type; that is, X is obtained
from a compact Riemann surface by puncturing at a finite number of points. Then
Q(X) consists of the holomorphic quadratic differentials on X which have, at worst,

simple poles at the punctures of X.
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Another norm on quadratic differentials is the hyperbolic sup-norm. Let X be a

hyperbolic Riemann surface with its hyperbolic metric p. Define

—(C)]
lalloo = sup o) (3.2)

fAS

Since |q|/p* is a function on X, we are justified in taking a supremum. The norm
defined by (3.2) is called the hyperbolic sup-norm of gq.
Let B(X) denote the Banach space of holomorphic quadratic differentials on X

for which the hyperbolic sup-norm is bounded.

3.3 Schwarzian Derivative

There is a very useful relationship between univalent functions and quadratic differ-
entials via the Schwarzian derivative. If f is univalent on some domain D, then the

Schwarzian derivative of f is defined by

B f” ! 1 f// 2
S = (f’ 2\ f
Since f is univalent, f’ # 0, and so S{f} is well-defined. The definition of the

Schwarzian derivative is not nearly as important as its properties.



40

Proposition 3.3.1. Let f and g be univalent in a domain D. Then,

(i) S{f} =0<«<= f is a Mébius transformation.

(i) S{f o g} =(S{f}og)(g)?+ S{g}.
Proof. Straightforward computation. O

Remarks 3.3.2. The first part of this proposition can be interpreted as a geometric
result which indicates that the Schwarzian derivative measures how far a univalent
function deviates from being a Mébius transformation. Also, note that S{f o g} =
S{g} if f is a Mébius transformation. Thus, the Schwarzian derivative of a univalent

function is invariant under post-composition by Mobius transformations.

A very important observation related to part(iz) of Proposition 3.3.1 is that the
Schwarzian derivative has the transformation property of quadratic differentials.

That is, if f is univalent and ¢ is a Mobius transformation, then

S{fogt=(S{f}oag)lg)

Thus, we can identify the image of a univalent function under the Schwarzian
derivative as a quadratic differential.

Since the interplay between univalent mappings and Schwarzian derivatives plays
a important role in this thesis, we gather together some of the basic results about
Schwarzian derivatives in a series of propositions.

Let D be any domain which is Mébius equivalent to the unit disc and let p(z)|dz|
be the hyperbolic metric on D. Let f be univalent in D and assign the hyperbolic

sup-norm to S{f} :

1S{f}HIp = sup 1S{f}p(z) 2.
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3
Proposition 3.3.3. If f is univalent in D, then ||S{f}||p < 3"

Proof. This fact follows easily from the Area Theorem. See [17] O

Thus, univalent functions have finite hyperbolic sup-norm.

Proposition 3.3.4. Suppose that g is univalent in a disc A and that f is mero-

morphic and locally one-to-one in A. Then,

1S{f} — S{gH|la=1S{f o9 Hlgen)- (3.3)

Proof. Let p4|dz| denote the hyperbolic metric on A and similarly for pg|dz|, where
9(4) = B.

57} = S{oHla = sup S SHD

2€A ,OA( ))

— sup 1S{f} g~ (w)) = S{g}(g~"(w))|
weB pe(w)| (g~ (w)])?

— sup 1S{f o g Hw) — S{go g }(w)|[(g7!) (w)?
weB (pB(w)|(g=") (w)])”

= [|S{fog  Hlga

O

The next two results tell us that we can solve the Schwarzian differential equation

and that, under certain circumstances, the solution is univalent.

Proposition 3.3.5. Let g be any holomorphic quadratic differential on a simply
connected domain D C C. Then, there exists a function f, meromorphic in D,
such that S{f} = q. The solution is unique up to post-composition by a Mobius

transformation.
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Proof. Consider the hypergeometric differential equation

(3.4)

which is a linear differential equation. Hence, (3.4) has linearly independent holo-

morphic solutions in D, say w; and ws. Since there is no w' term in (3.4), the

Wronskian wywl — wow)

f =% we have
w2

and

Hence,

S{r}

is constant, which we normalize to be 1. Then, setting

wow] — wiwh =1
w3 w3
!
f” 2w2
w3

—2wp2 +2(wh)® 1 (4 (wh)?
2

2
w;

by (3.4).

O

We now have the following extension theorem. A quasidisc is the image of the unit

disc under a quasiconformal mapping.
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Proposition 3.3.6. Let D be a quasidisc. Then, there is a constant € > 0 such
that if f is meromorphic in D and ||S{f}|| <€, then f is univalent in D and has a

quasiconformal extension to C.

3.4 Teichmiiller Theory

3.4.1 Quasiconformal Mappings

Definition 3.4.1. (Quasiconformal mappings)
Let X and Y be hyperbolic Riemann surfaces. A mapping f : X — Y is called
K-quasiconformal (K > 1) if it is an orientation-preserving homeomorphism, it has
distributional derivatives

_of of

fz—ga fz:£

which are locally in L?, and the complex dilatation u; given locally by
Lz
B\ G, = fdz

K-1

K1 olmost everywhere.

satisfies |pg| <

The definition of quasiconformality implies that f, is non-zero almost everywhere,
and therefore, 1 is a well-defined object. In fact, uiy is called a Beltrami differential;
that is, us is a differential form of type (-1,1).

A quasiconformal mapping, f, of C is called normalized if f fixes the points 0,1, oco.
A fundamental result related to quasiconformal mappings is the fact any p with
||4]|co < 1 gives rise to a quasiconformal map. This result is called the Measurable

Riemann Mapping Theorem.
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Theorem 3.4.2. (Ahlfors-Bers)

For any L® Beltrami form p on C with |||l < 1, there is a unique normalized
quasiconformal mapping w* : C — C such that the complez dilatation of w is .
Furthermore, for any p with ||yl < 1, there is a family of normalized quasiconfor-

mal mappings wl' : C—C, lt| < 1, satisfying

(wf). ="

Then, wk(z) is a holomorphic function of t (t in the unit disc) for each z € C.

3.4.2 Classical Teichmiiller Space

We begin with the classical construction of Teichmiiller space. Let X be a Riemann
surface of finite type; i.e., X = X — E, where X is compact and F is some finite set.
We define the Teichmiiller space of X, denoted Teich(X), to be the set of pairs (Y, ¢)
where Y is a Riemann surface and ¢ : X — Y is a quasiconformal mapping, modulo
the following equivalence relation. Two pairs (Y7, ¢1) and (Y3, ¢o) are equivalent if
there exists a conformal isomorphism « : Y; — Y5 such that ¢ = a0 ¢p; on E and
¢ is isotopic to a o ¢ rel E.

Note Teich(X) is a metric space with the metric:

d((Y1, 61), (Y2, ¢2)) = inflog K (),

where the infimum is taken over all quasiconformal mappings f such that ¢o = fo¢,
on E and ¢, is isotopic to f o ¢ rel E.
There is an alternate description of Teichmiiller space coming from the Ahlfors-

Bers Theorem (Theorem 3.4.2). Let M (X) denote the open unit ball of the complex
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Banach space L°(X). Then, there is a natural map
®: M(X) — Teich(X) given by ®(u) = [w”] (3.5)

where [w] is the equivalence class (in the sense given above) of the unique normal-
ized quasiconformal map w# which has Beltrami coefficient .

Combining results from the previous sections, we arrive at the following result.

Theorem 3.4.3. There exists a unique complex analytic manifold structure on

Teich(X) such that ® : M(X) — Teich(X) is a holomorphic split submersion.

Remark 3.4.4. The idea behind the proof of this theorem is due to Bers and relies
on the fact that Teich(X) can embedded in a space of quadratic differentials on the

conjugate Riemann surface, X*.

Proof. (sketch)

We assume that X is a hyperbolic Riemann surface and let 7 : HH — X be a universal
covering map with covering group G. Then, 7* : M (X) — M (H) maps the Beltrami
forms on X isomorphically onto the G—invariant Beltrami forms on H. This is the
space Mg(H) = {p € M(H) : (no g)(¢g'/g) = p, for all g € G}.

Extend each 7*pu to C as follows and denote this extension by [

Then, Theorem 3.4.2 gives a quasiconformal mapping w# : C — C which is
univalent in the lower half-plane, H. Hence, we can apply the Schwarzian derivative

to w” in the lower half-plane.
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Define P : Mg(H) — Bg(H) by

P(n) = S{w"|z}. (3.6)

Here, Bg(H) is the space of G—invariant holomorphic quadratic differentials on
the lower half-plane. Since Bg(H) is isometrically isomorphic to B(X*), we get a
mapping from M (X) into B(X*), which descends to a map B : Teich(X) — B(X*).
This map is called the Bers embedding of Teichmiiller space.

By Proposition 3.3.3, U = B(Teich(X)) is a bounded subset of B(X*). Fur-

thermore, using Proposition 3.3.6 we can show that U is open and that there is a

real-analytic section s : U — Teich(X). O

3.5 Holomorphic Motions

Holomorphic motions are very useful in the study of complex dynamical systems

and of Teichmiiller spaces.

Definition 3.5.1. Let V be a connected complex manifold with basepoint Ay and let
X be a subset of C. A holomorphic motion of X over V is a map ¢ : V x X — C

such that

(a) d(Ao,x) =z for all x € X,
(b) for each x € X, the map t — ¢(\, ) is analytic, and

(c) for each A € V, the map x — ¢(A, x) is injective.

Example 3.5.2. Let M(C) be the open unit ball in L>(C). Define ¢ : M(C) x C —

A

C by
O, 2) = w(2),



47

where w* is the unique normalized quasiconformal mapping of C with complex di-

latation p. By Theorem 3.4.2, ¢ is a holomorphic motion of(f: over M(C).

A basic result about holomorphic motions is the following result of Mane, Sad,

and Sullivan (see [24]).

Theorem 3.5.3. (The \—Lemma)
A holomorphic motion of X has a unique extension to a holomorphic motion of X.
The extended holomorphic motion is a continuous map ¢ : V x X — C. For each A,

the map ¢ : X — C extends to a quasiconformal map of the sphere to itself.

This result is used in proving the following result about extending holomorphic

motions. For a proof, see [14].

Theorem 3.5.4. (Slodkowski’s Theorem)
Suppose that V = D. Then, any holomorphic motion ¢ : V x X — C extends to a
holomorphic motion ¢ : V x C—>C. Furthermore, for each \ € V, the maps ¢, are

quasiconformal mappings of the sphere.

Remark 3.5.5. Actually, this theorem is true for V' any simply-connected Riemann

surface.



Chapter 4

Spider Space and the Spider Map

In this chapter, we introduce the two primary players in this thesis: Spider Space,
which is built of combinatorial and analytic data, and Spider mappings, which
are holomorphic self-mappings of Spider Space. There are infinitely many Spider
mappings on Spider Space and we characterize all of these mappings in Section 4.
The iteration of Spider mappings leads to fixed points in Spider Space, and this is
proved in Chapter 6. In Section 5 of this chapter, we show that the existence of
such fixed points provides an answer to Question 1 posed in Chapter 1.

The data given is a choice of external angle 6, a multiplier ; with 0 < |u| < 1
and a degree d. The combinatorics of the external ray of angle 6 allows us to pick
appropriate branches of Py é in determining the correct polynomial. We will see that
different choices of branches leads to different polynomials and that after adding
27(d — 1) to the argument of any branch, we return to the same polynomial. The
key to this algorithm is identifying the correct logarithms, which is encoded in a

kneading sequence and in the winding of curves described below.

48
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4.1 Standard Clubbed Spider

Given the data d, 6, and pu, as specified in Question 1 , we construct the following

combinatorial object called the Standard Spider:

N N
Sou=J L; U D;U{oo},
j=1 j=1

where the open discs D; C {2z : |z| < 1} are discs are constructed so that

Fjﬂ{z tz| =1} = 210 and Eﬂﬁj =0, for i # j.
These discs form the feet of our standard spider and its legs are the rays
L = {re* ™7 r > 1}

where j =1,...,N.

Next, we specify a sequence of distinguished points in each foot, converging
geometrically to the center of the foot. For each 7 = 1,..., N , this is the set of
points {z; ky = pF(z; — ¢;) + ¢jlk = 1,2,3,...}, where ¢; is the center of D;.

Figure 4.1 displays a standard spider picture; the extra information in the picture

will be explained in the following sections.

4.1.1 The Looping Number

As stated in the introduction to this chapter, we need to differentiate between dif-
ferent branches of Py ;; this date is encoded in the wrapping of paths around the
feet of the spiders to follow. We specify a path, I', connecting x; to x1,y inside the

first foot; see Figure 4.1 . The convergence of the spider algorithm to the desired
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Figure 4.1: Standard spider for § = 13—5, pw=0.5t,d =2

polynomial depends on the homotopy type of this path. Note that x,,y is separated

from z; by the annulus
A={z:|plR < |z—c| < R},

where ¢; is the center of D; and R is the radius of D;. Also note that A does not
contain any of the distinguished points in D;, but z; and z;, 5 lie on the outer
and inner boundaries of A, respectively. Let I" be any continuous path from z; to
x14n that travels only through A and does not cross itself. Since we are interested

in the homotopy type of this path (i.e., number of windings around the compact
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component of C — A), we only consider paths that travel exclusively clockwise or
counter-clockwise.

Let (') be the number of radians through which I" turns about the center ¢y,
with the convention that «(T") is positive if T' travels counter-clockwise from z; and

is negative if I" travels clockwise. So, taking arg(u) € [0, 27), we have

21l + arg(u) if I travels counter-clockwise
a(l') =

21l + (arg(p) — 2m) if T travels clockwise.

Definition 4.1.1. The number, ¢, which is an integer, captures the number of com-
plete loops (and the direction of looping) I' makes before terminating at x1,y. We

call this number the Looping Number for I'.

Figure 4.2 displays some looping numbers.

X1 X1

Figure 4.2: Looping numbers. The left picture has a(T') = +2F and £ = +1. The
right picture has o(I') = —2F and £ = 0.
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4.1.2 A Kneading Sequence

Since our algorithm involves choosing a particular inverse branch of an analytic map,
we require a method of identifying the correct branch; the data for this choice comes

from a kneading sequence. On the standard spider picture, separate the closed unit

9 - 9+1 O+d—1
27rzd ’ e2m_d Ve ,62m—d :

disc into d sectors by drawing the radii connecting 0 to e
these points on the unit circle are the d preimages of x; under ¢ — dt. Label
the sector containing x; with Sy and then label the remaining sectors, in counter-

clockwise direction, with Sy,...,S4_1. Then, for 5 =1,..., N — 1, we set:

knead(j) = S, if z;isin S,.

2mi§ o +d=1
T, .., e

Now, since 6 is periodic, the point zy will be one of the d points: e
and its label can be determined by where x5 lies in the circular order as we travel
counter-clockwise around the unit circle. If, as we travel, we pass from S, into

S, at xy then set knead(N) = S™

n

where the indices m and n are to be taken
mod d. The standard spider along with the sector sequence and the looping number
provides all the information needed to find the specified polynomial. For example,

the sector(kneading) sequence associated with 6 = 2 and d = 2 is 5,9051.57.
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4.2 Spider Space

We are now ready to define the Spider space, 7y ,. We begin with

Definition 4.2.1. (Spiders)

A spider ¢ : Sp,, — Cisa mapping defined on the Standard Spider which satisfies:

(1) ¢ is a continuous and injective,
(2) ¢ is univalent on UD;,
(8) o(x1) =0 and p(o0) = oo and

(4) ¢ respects circular order at infinity.

Note that the third condition in the above definition is a statement about the
legs of the spider. It says that ¢ preserves the order in which the legs of the Standard
Spider approach infinity.

We denote the set of all spiders by 7;?“ and define Spider Space as the quotient
75,” = 7-6{,)11/ ~

where 1 ~ (s if ¢ is isotopic to ¢y rel 1 (| D;)-

We refer to |J¢(D;) as the feet of the spider ¢. Note that, since the spiders
are required to be continuous on |JJD, and fix infinity, the feet of the spider are
compact subsets of C.

We think of two spiders being equivalent if we can continuously deform the legs
of one onto the legs of the other, while keeping the feet stationary. Figure 4.3 shows
some typical spiders; the top two belong to the same equivalence class, while the

bottom one is not equivalent to the other two.
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Figure 4.3: Some typical spiders for a period 4 cycle.
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4.3 Spider Mappings

Let ¢ be the looping number for I' in the standard spider and define a mapping
o¢ : Toyu — Toy as follows. Given a representative, ¢, from [¢] € Tp,, we will
produce a new spider, ¢, such that oy([¢]) = [@]. Consider the polynomial P(z) :=
P,(z,)(2) = ¢(22)(1+2)% and use the kneading sequence associated with 6 to choose
a branch of P!, Since the leg ¢(L;) leads to the critical value 0 of P, we see that
P~Y(p(Ly)) consists of d curves meeting at —d and dividing the complex plane into
d sectors; label the sector containing 0 with Sy and label the others sequentially in
a counter-clockwise fashion with Si,..., S5 1.

For j = 1,...,N — 1, let ¢(z;) be the point in P~*(¢(x;41)), which lies in
the sector given by knead(j). Next, define ¢(L;) to be the curve in P~ (¢o(Lj41))
leading to @(x;) and let ¢(D,) be the preimage of ¢(D,1) which has ¢(x;) on its
boundary. Thus, we have now specified all but one of the legs and feet of a new

spider.
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4.3.1 Defining the Final Leg and Final Foot

We now define the method for determining in which sector (Sy, Si,...Sg 1) the final
foot of the spider should be defined. In what we have done up to this point, we
have used combinatorial data related to the input angle € to determine our spider
map; we need only add a little more combinatorics to finish the description. A slight
modification we use is that we now assume that 6; = # and that 6; < 6, where 0,
is the angle of the companion ray that lands with the ray of angle # at the principal
root, of the hyperbolic component determined by €. This modification is justified
since either of the two rays landing at the principal root will determine the same
polynomial.

Recall that the last entry in the kneading sequence for #; is of the form S.,,,
where the indices are to be taken modulo d. This means that d¥~'6, is the ray
separating sector S; from S;;; and d" !0, is the unique periodic (of period N) pre-
angle of #,. We now add the orbit of #; to our standard spider picture and consider
the orbit portrait of the polynomials in the hyperbolic component. The orbit portrait
is obtained by indicating the orbits of both #; and #; on S* and connecting (inside
the circle) the rays that land together in the Julia set. In the Julia set, these rays
land on the repelling orbit of the principal root of the Fatou components containing
the attracting cycle. In other words, we will analyze the data coming from a known
Julia set of a polynomial in our hyperbolic component combined with the spider
information in order to determine which is the preferred sector for the final foot.

Note that Ryv-14, is the ray in the Julia set that lands with Rgv-14, at the

principal root of the Fatou component containing the critical point. Since d™~16, is
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periodic of period N, it cannot land at the boundary of any of the sectors determined
by #,. This follows from the fact that #; has only one pre-image under the d—tupling
map which is periodic. Hence, dV~'6, lies strictly inside one of the sectors, and so,
the principal repelling root at which both d¥~10; and d¥ 16, land is also in this
sector. Since the attracting periodic point in the Fatou component containing the
critical value lies in the same sector as this principal repelling root, we will have
determined the correct sector once we identify the sector in which d” =10, lies.
Figure 4.4 illustrates the procedure explained here. For d = 3, we have shown
the orbit portrait for the rays corresponding to the angles 6; = 84—0 and 6, = %
and we note that these rays land at the principal root of a period 4 hyperbolic
component in the degree 3 parameter space. The heavy black dots represent the

principal repelling roots of the Fatou components containing the attracting periodic

cycle.
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Figure 4.4: The orbit portrait for § = 84—0 and d = 3.

Proposition 4.3.1. If the last entry of knead(0;) = SZH, then the dynamic ray of

external angle dN=10, lies in sector S;.

Proof. The orbit portrait for polynomials associated with the angle #,, contains the

angles

0,0, d6,,dbs, ..., dYN 10, dV 16,

with repetitions possible in this list if the orbit portrait is not primitive. The
complementary arc (d¥~'0;,dVN~'6,) is the critical arc in that it covers the arc (61, )
exactly d times. Hence, by Lemma 2.1.18, this arc has circular length greater than
1 — 1/d. Since d¥~'6; lies on the separator of sectors S; and S;,1, and each sector

has length 1/d, it follows that d™ 16, lies in sector S;. O
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Thus, we see that the kneading sequence of #, is all that we need in order to
determine which is the preferred sector; namely, you always take an immediate left
(when travelling from infinity) from the leg of the spider that goes through the
critical point. The preimage, €2, of ¢(D;) in this sector will contain our final foot.

So, we now have a curve terminating at —d along with a “foot” attached, but
this is not the N foot and leg since ¢(zy) # —d. Notice that ¢(z1,y) is in the
interior of (D;) and hence @(xy) is in the interior of Q. We require that the N*
foot has ¢(zy) in its boundary and that the N** leg terminate at ¢(zy). We need

to restrict to a subset of 2 in order to define the final leg and foot.

r
q Zy

First foot of ¢

G=py

Final foot and leg of ¢

Figure 4.5: Demonstration of the trimming process.

By univalence, ¢(A) is a well-defined annulus in ¢(D;), which has ¢(z;) on
its outer boundary, ¢(z1,y) on its inner boundary, and no distinguished points
@(z145n) inside. Let A be the preimage of ¢(A) in Q. Since we are pulling back
by an analytic map, A contains none of the preimages of the distinguished points
of ¢(D;), but has —d on its outer boundary an d ¢(zy) on its inner boundary.

Set p(Dy) = closure(Q) — closure(A). Further, ¢(T') lifts to a well-defined path,
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T, from —d to @(z1,n). Set p(Ly) = T U . Figure 4.5 illustrates the process of
defining the final foot and leg.

Thus, we have completely specified a new spider ¢ by pulling back via P and
restriction. This defines a holomorphic mapping from THO, ., to itself, which descends
to a holomorphic self-mapping, o, of Ty ,. It is easy to check that the equivalence
class of ¢ depends only on the equivalence class of . Figure 4.6 illustrates the

complete pull-back picture.

L),
2 7T

\

\

£
St

-
NS
-

Figure 4.6: Spider map for d = 2,0 = 13—5, w=0.5¢

4.4 Characterization of Spider Maps

Earlier, when defining the standard spider, we incorporated a path I" looping ¢ times
through the annulus A and we used this path in defining a spider mapping. We will
show that for each ¢, we get a different fixed spider class for o, and hence, there are
infinitely many spider mappings on our Spider space. At first glance, this seems a
bit disconcerting since we are trying to use the iteration of a spider map to find the

d — 1 parameters that lie above u. As it turns out, for all [ in the same congruence
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class mod (d — 1), the maps oy all determine the same parameter. And so, the

d — 1 classes of loops determine the full set of d — 1 parameters.

Theorem 4.4.1. Let { denote the looping of I'. The fized spider, [p4] for o4, consists

of spiders whose legs loop about their respective feet ¢ times. Thus, for each

d—1
congruence class of ¢ mod (d—1), the fized spider @, determines a unique parameter

Ag.

Proof. Begin with any spider ¢, with interior looping number ¢ and analyze the
effect of iteration of o, on the looping. The key to this proof is that the interior
looping eventually becomes looping outside the feet.

Suppose that the j™ leg of ¢, spirals k; times about the j* foot and apply oy
once. This results in a new spider ¢; such that, for j = 1,..., N — 1, the j* leg
spirals k;11 times around the j* foot and the N leg wraps (% + ¢) times about
the N foot. This follows from the fact that when pulling back via P, (z,)(z), the &y
loops about the critical value 0 become %1 loops about the preimage of (D), and
then the spider map adds the £ loops going from —d to ¢ (zy). After N iterations,
the j™ leg of oy = a3™ () spirals (% + /) times about the j* foot. Continuing,
we find that after mN iterations, the ;™ leg wraps C];—gn +3m (1)"1 times about
the j™ foot. Taking the limit as m — oo, we see that the fixed spider ¢, for oy

has each leg wrapping about its respective foot Y >° (é)n {= d%dlg times. (Note
that the wrapping of the legs about the feet in the initial spider is irrelevant as these
loops are destroyed in the limit.) Setting Ay = @ ¢(z2), we get one of the d — 1
parameters lying above pu.

Next, suppose oy and o, determine the same parameter, A = @ p(22) =
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©Yoot(z2). Then, by induction, we get Yoo r(Tn) = Yooe(xy) for all n > 3. In par-
ticular, o ¢ and ¢ ¢ agree on the distinguished points in each foot, D;, of the
standard spider. Since each of these distinguished sequences has an accumulation
point in the foot and both ¢ ¢ and ¢. . are analytic on the feet, it follows that

these two maps agree on the | D;. In other words, the feet for ¢, are the same as

those for ¢ ¢. The only way for two fixed spiders to have the same feet is if

dg'
1

is congruent to ¢ modulo d and this is equivalent to ¢ = ¢ mod (d — 1).

d—1

4.5 Fixed Points of Spider Maps

The following result shows that a fixed point of the spider map gives us a parameter
A such that Py(z) has an attracting periodic cycle of a given length (equal to the
period of f under the d—tupling map) with multiplier . Actually, we do much better

than this. The combinatorics of the fixed spider is also determined.

Theorem 4.5.1. Suppose that [¢] is a fized point of oy. Let ¢ be any representative

of [¢] and set A = p(x2). If ¢ := limg,o0 p(2114n), then
PN =¢  and (V) () =p

Moreover, the portion of the j* leg of the fized spider outside Kp, , is homotopic to

the dynamic ray of angle d?=16.

Proof. By assumption, we have that [@] = o,([¢]), and so, ¢(x;) = ¢(z;), for all

j > 1. By construction, we have that P\(¢(z;)) = ¢(z;41), for all j > 1. So,
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PN () = PfN(]}Lng<P($1+kN))
= PYN(lim @(z14kn))
k—o0
= lim PN (@(z14kn))
k—o0
= I}LTO<P($1+(k+1)N)

= (.

Next, we note that the fixed spider that we have found gives us a linearizing

map for the target polynomial. In particular,

— oN
@ o(n(cuir) © Polayy © lo-1(piciry) = 1

where 7 is chosen so that we are in a linearizing neighborhood of ¢. Thus, P(;g\g’w) has
derivative p at .

In order to verify the second statement of the theorem, note that any looping of
a leg of the fixed spider about its foot may be pushed inside of the Fatou component
that contains the foot. This follows from the proof of Theorem 4.4.1 in which
we show that any looping depends only on the looping that occurs in the annulus
A C (D), which in turn is contained in the interior of Kp, . Hence, the portion
of the j* leg outside of the filled-in Julia set stretches to infinity like a dynamic
ray and in fact, it is not difficult to see that this leg is homotopic to the union of
the ray that lands at the characteristic repelling periodic point on the boundary

of the Fatou components containing the j** foot and the looping within the Fatou

component.



Chapter 5

Complex Analytic Structure of

Spider Space

In this chapter we show that Spider Space 75, is a complex manifold, by showing
that it is isomorphic to a classical Teichmiiller space as described in Chapter 3.

Results there then show that Spider space has a unique analytic structure.

5.1 Analytic Structure of Spider Space

Let 2 = C —|J D;, which is a connected open subset of the sphere with N disjoint

boundary circles. Clearly there is a mapping
M(Q) — Ty, given by v+ [¢"]

where ¢ is quasiconformal outside of the feet, sends z; to 0, fixes infinity, and

is conformal on the feet. The equivalence relation here is the spider equivalence

63
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relation which is ¢; ~ ¢, if there is a non-zero constant A such that ¢; = Ay, on
U D; and ¢ is isotopic to Ags rel ¢ (U D;).
The Riemann surface €2 also has its own Teichmiiller space in the classical sense,

denoted T'(2).
Theorem 5.1.1. Spider space is isomorphic to T(S2).

Proof. There is a map ® : Ty, — T(2) given by ®([¢]) = [¢|q]. In other words,
we restrict the spider ¢ to Q and consider its equivalence class in T'(€2). Clearly,
this map is surjective. To see that this map is well-defined note that if ¢; and ¢,
are spider equivalent, then their restrictions to (2 are isotopic rel the topological
boundary which coincides with the ideal boundary in this case and hence they are
equivalent in 7'(2).

Finally, suppose that ®([¢1]) = ®([ps]) so that there is a analytic map g such
that goy; = @ on 002 and go p1]q is isotopic to @a|q rel 02. We need to show that
1 and gy are spider equivalent.

Since p1(z1) = @a(x1) = 0 and ¢;(c0) = @o(00) = o0, it follows that g(0) = 0
and g(oo) = oo. Extend g to C by setting ¢ = ¢, 0 ;" in C — Q. Then, g is a
homeomorphism on C — 99 and since 052 is removable (as the disjoint union of
circles), g is a global conformal homeomorphism. Since g fixes 0 and oo, it follows
that g(z) = cz, for some non-zero ¢ € C. So, we have that ¢; = (1/¢)¢y on C — 2

and ¢ is isotopic to (1/¢)p, rel C— . Hence, 1 and s are Spider equivalent. [

Thus, Spider space has the analytic structure of a Banach manifold.
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5.2 The Tangent Space to Spider Space

We now describe the tangent space to spider space by examining the tangent vectors
to a holomorphically varying curve of spiders. We will find two characterizations of
the tangent space, which will provide a fruitful way of examining the spider map.

Our first characterization involves a particular condition on vector fields.

Definition 5.2.1. Let Z, be the space of complez-valued vector fields V on |J o(D,)

which have continuous extensions v to C satisfying

1. 817/82 18 bounded
2. V is holomorphic on Ue(Dy)

3. V(0) =0 and

4. ; — 0 as z — oc.

These conditions reflect the fact that each spider sends z; to 0 and fixes infinity.
Hence, the vector fields generated as the feet move will have fix 0 and infinity.

We call Z, the space of Zygmund bounded vector fields on the feet of a spider.

This space is a complex Banach space when equipped with the norm:
V|7 := inf { 18V ||oo : V is a continuous extension with bounded & — derivative} :

Proposition 5.2.2. The tangent space to Spider Space at [p], denoted T,Ty,,, is

Z,/C, the space of Zygmund vector fields modulo the vector fields cz%.

Proof. Let 4, for |t| < 1, be a holomorphic curve of spiders such that o = ¢. As ¢

varies, this holomorphic curve defines a holomorphic motion, ®(t, z) = (g0 *)(2)
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of the feet, p(UD;). Note that ® fixes the points 0 and co. By Slodkowski’s Theorem,
this holomorphic motion extends to a holomorphic motion @, of the entire Riemann
sphere and the quasiconformal maps &, have Beltrami coefficients iy which depend
holomorphically on ¢. Differentiating this curve of Beltrami coefficients, we have
p(2) = tug(2)~+o(t) where g = 8V and V is the tangent vector to &, at ¢ = 0. Thus,
the tangent vector at the spider ¢ is given by restricting V to the feet of . Hence,
tangent vectors to ¢ give rise to vector fields on the sphere which have bounded
O—derivative. Since the holomorphic motion fixes 0 and oo, these vector fields
necessarily vanish at these points. Conversely, given a vector field V(z)a% on the
feet of the spider, which has an extension to the sphere with bounded d—derivative,
the holomorphic dependence of solutions to the Beltrami differential equation implies
that there is a holomorphic motion of the feet with V(z)Z as the tangent vector

field. O

Next, we provide the second characterization of the tangent space, which is the

Banach dual of a certain space of quadratic differentials on the sphere.

Definition 5.2.3. Define (), as the space of integrable quadratic differentials on

the Riemann sphere, holomorphic on C — | ¢(D;).
Proposition 5.2.4. Q, is a Banach space with respect to the L'—norm on C.

Proof. Note that the disjointness of the ¢(d;) implies that C — (J ¢(D,) is a open
connected subset of C, and hence has a Riemann surface structure. So, we have the

decomposition

Q= L'((Jw(D)) @ Q(C ~Jw(D))).
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Since L'(J¢(D;)) and Q(C — J¢(D;)) are Banach spaces, it follows that Q,

is also a Banach space. O

Proposition 5.2.5. Z, = (), where Q), is the Banach dual of Q.

Proof. To realize this, we use two results from functional analysis: the Hahn-Banach
theorem and the Riesz Representation theorem.

Clearly, @, can be identified as a closed subspace of L!(C). If £ is any bounded
linear functional on @, then by Hahn-Banach, ¢ extends to a bounded linear func-
tional, E, on all of L'(C). By Riesz Representation, lis represented by an L* function

. By a well-known formula, we can solve dV = y to find

Ve = [0 {2 - 2+t lace

Letting V be the restriction of V' to the feet | ¢(D;), we have a vector field V(z)Z

defined in Z,. Then, the correspondence £ — V' gives an isomorphism between @7,

and Z,. O

Note that we have used the natural pairing between L'(C) and L=(C) to define

the pairing

<, > Z,xQ,—C

(V,q) — //K:EV(Z)Q(Z)dZ dz (5.1)

where V is any continuous extension of V.

Lemma 5.2.6. The value of the integral in (5.1) does not depend on the choice of

extension V.
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Proof. See [19]. O

Summarizing, we have the following identifications: T, 7, = Z, = Q.
Even though (@), is not reflexive, it is separable with Rat,, the rational elements

in (), as a dense subspace. More precisely,

Definition 5.2.7. Rat, is the Banach space of holomorphic quadratic differentials

on C with, at worst, simple poles at a finite number of points of U (D).
Proposition 5.2.8. Rat, is dense in Q.

Proof. This fact is known as Bers’ Approximation Theorem and a complete proof

is found in [13], Chapter 3. O

An element ¢ € Rat, has the form

q(2)d2? = (Z Ok )dzz,
2= Pk

k=1

where px € J ¢(D,). Further, for ¢ € Rat,, the above pairing takes a more explicit

form:

<V,g>= / / OV (2)q(2)|dz|” = 2mi > Res,, V. (5.2)
C k=1



Chapter 6

Contraction of the Spider Map

Having identified the tangent space, the derivative of the spider map is a linear
mapping d,oq : T, T, — T Tg u, where [@] = o4([¢]). In this section we show that
this mapping is strictly contracting in norm, thus allowing us a way to iterate to a
fixed point of the spider map. Of course, proving contraction requires a metric on
Spider Space. We define an infinitesimal metric that is defined on the tangent space
to Spider Space. In fact, this metric is dual to the L' norm on @, and we will work
with a push-forward operator on (), and show that this operator is the adjoint of

the derivative d,oy.

6.1 The Push-forward Operator

We begin with the description of this dual map, P, : 3 — @, which is the
pushforward operator with respect to the polynomial P = P,,). More precisely,

let 2y be any non-zero point on the Riemann sphere and take U to be any simply

69
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connected open neighborhood of zy which does not contain zero. Then, P~(U)
consists of d domains, Vi, V5, ..., Vg, which have disjoint closures. Given ¢ € @,

define
d
P(@)=) GonU
=1

where §; = §|v;. Clearly, P.(§) is holomorphic on C - U «¢(D;), possibly gaining
poles on | J (p(ﬁj) at the images of poles of ¢. As always, the operator norm of the
mapping P, is given by
[Pl = sup  [[P(q) (6.1)
Ge€Qy,lIdllh=1

Integrability of P,(§) and the bound on the norm of P, follows from:

d
r@<Y [ lal=[ <
ALY AUEY
Thus, P,(q) is integrable and ||P,|| < 1. We now eliminate the case ||P,|| = 1.

Proposition 6.1.1. P, is strictly contracting; that is, ||P.|| < 1.

Proof. Suppose that ||P,|| = 1. Then, there is a sequence ¢, € )3, each of norm 1,
such that || P.(G,)|l1 /1 as n — oo.

First, we eliminate the case in which a particular ¢ realizes a pushforward norm
of 1; that is, we show that ||P.(§)|/s = 1 is impossible. Let z # 0 be any point
of the Riemann sphere marked by ¢. Then, z has d preimages: z, the image of z
under the spider map, and d — 1 other points s, ... ,w,. Now, ¢ cannot have poles
at the {w;}2, since, by definition of the spider map, the w; live outside the feet of

¢. Choosing an open neighborhood U of z, we see that ||P.(¢)|/1 = 1 implies that
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equality holds in the triangle inequality above and hence, ¢; = & 2?22 g;, for some
k > 0. But the ¢;, for ¢ > 2, have no poles at the w;, and so ¢ has no pole at z.

Putting all this together, we see that ¢ is a holomorphic quadratic differential on
the Riemann sphere with possibly simple poles at —d and oo only. But, any such
quadratic differential must have at least four poles. This contradiction tells us that
||Pc(dn)|]1 < 1 for each n.

Since each ¢, := P,(§,) is uniformly bounded, {g,} forms a normal family and
hence, we can extract a convergent subsequence g, which converges to ¢ € Q.

Using Fatou’s lemma, we find that

e )
lalli = [ timint g, | < limint [ Jgn,| =1

Also note that, since the ¢, all have norm 1, we can extract a convergent
subsequence that converges to some ¢ with ||G||; = 1. So, we have ¢, — ¢ and
P.q, = q € Q,. Since P, is a bounded operator, it is closed, and so, we get ¢ € Q3
and P, = q. By Fatou’s lemma, we showed that ||g||; < 1. If ||¢||; = 1, then we have
1 = ||gllx > ||P:dllx = |lg||1 = 1. The forces ||P.G||x = ||G||:, which contradicts our

earlier argument. Thus, we must have ||g||; < 1, and hence, our original sequence

could not converge to 1. So, || P,|| < 1. O

Now, we have shown that the mapping P, is strictly contracting and once we
show that P, is dual to d,o,, we will have proved the claim that d,o, is strictly
contracting. Before we prove the duality, we obtain an explicit expression for the

derivative of the spider mapping.
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6.2 Derivative of the Spider Map

If z € ¢(D;), then z = P,,(2) € ¢(D;41), where zp = ¢(z3). Differentiating the
equation
2\ ¢
Z:Pz2(2)222 <1+g> y

we find:
5\ \41
Vit1(z) = Va(z) <1 + 3) + 29 (1 + 3) Vi(2)

where V(2)2 € Z, and Vjy1(z) = V]o,,1)(?) is a tangent vector anchored at

z. (Similar statements hold for f/% € Zz.) So to determine the tangent vector

anchored at Z, we need only solve for V;(%), giving

- 1
B9 e

= (d:P.,)WVin(z) — VZZQ) (1 N 2)

Via(e) = Valeo) (1+ 3)

Let v;(2) = (dzP,,) 'Vj11(2) be the vector field obtained by lifting the V' via the

V(%) = VQZQ) (1 + 2)

be the global vector field that vanishes at —d and infinity and has value

Va(2)

Z9

derivative of P,, and let

at 0. Then, we write

Vi(2) = v;(2) —v(2).
The reason for the adjustment by the vector field v is the same as is explained

in [15]. One might expect that the derivative of a spider mapping would simply lift
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the vector field V to V via P,,. The problem with this is that the tangent vector
at 0 may fail to vanish even though 0 is fixed under the spider mapping. Thus, we

need to correct the lifted vector field by the global vector v.
Lemma 6.2.1. The mapping Py : Qpy — Q, s dual to dyoy : T, Ty, — T 79 p-

Proof. Let V € Z, and ¢ € (3. Since Rat; is dense in ()3, we may assume that

g € Raty in order to prove the lemma. We must show that
< (dpoe)(V),§ >=<V,P(q) > .

Let p1, po, ... ,Pm be the finitely many poles of ¢. Then,

NE
5
=
§z

1 ~
—<V,Cj> =
211

=
Il
—

ES
Il
—

<
Il
—

Il Il
NERANE
M= 'sz

3

=

Y

N
Res;, v;G — Z Res;, Vd) (6.2)

j=1

ey
Il

—
—

Resz,v;q.

I
NE
WE

B
Il

—
<
Il

—_

The second summation in (6.2) vanishes by Cauchy’s formula since v§ is a global 1-
form on the sphere. Next, let py = P,,(px). From the definition of the push-forward,

we have

1 N - N
s <ViPg> = ;Reska-P*q

d-1 m N

m N
- Z Z Resp, v;q + Z Z Z Res; 0054,
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where u?,(:) is one of the d — 1 pre-images of py which does not lie in any foot of ¢

and 9; = (dﬁ)(i) P,,)7'Vj41. Since ¢ does not have a pole at any of the u?,(:) and 9; is
k
holomorphic, the triple sum in the last computation vanishes. Thus,

m N
<V,Pg>=2mi Y Y Res;v;q=<V,j>.

k=1 j=1

Combining Lemma 6.1.1 and Lemma 6.2.1, we have

Proposition 6.2.2. (Spider Contraction)

The Spider mapping is strongly contracting. That is, ||d,0|| < 1.

6.3 Convergence of the Algorithm

In this section, we define a subset of spiders which is invariant under the spider map
and show that Spider Space is attracted to this invariant set. This compactness
statement is a bit complicated and may seem confusing. The point is that we find
a set of spiders for which the feet remain bounded away from infinity and do not
shrink to points under iteration. We verify that the sequence ¢, (z2) = (0°"(¢)) (z2)
does not converge to 0. These conditions depend most definitely on the fact that
the multiplier of our target map is in the punctured disc.

Since the polynomial we seek will have an attracting cycle of multiplier p with
0 < |p| < 1, the orbit of 0 is infinite and discrete. Hence, there is a closest return
of 0 under iteration of the target polynomial. Let C(u) denote this distance. Then,

we have



Proposition 6.3.1. (Invariant Subset)

Let 0 < e < C(u)/2 and define Ty, C T, as the set of spiders, ¢ satisfying

(i) p(xj) € D (~d, d(2)7T) , for j > 1,
(ii) the discs D (¢(x;),€), for j > 1, are disjoint.

Then, T4, is invariant under the spider mappings of Tp,.
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Proof. Let ¢ be any spider satisfying (i) and (i7) above. We show that ¢ = o(p)

also satisfies these conditions. We verify condition (¢) first.
Since ¢(zj11) € D (—d,d(?d) = ) we have
2 71
o)l <d+d ()"
We also know that |p(z2)| > €, by condition (i7) as ¢(x1) = 0. So,

|(25) + d| = | Py, (0(@41)) + d]

1
_ d‘@(fﬂj+1)|d

1

|o(z2) 2
< dw as |p(x2)| > €
€d
_d 2d) 1) °
€d
20\ 77 *
oy (c_i L <_d) )
€ €\ €
2d dil
<d (—) by Lemma 6.3.2 below.
€

In order to verify that condition (i7) holds for @, we first show that the points

@(z;) stay a bounded distance away from —d. Note that P! . (D(0,¢)) is a disc

o(z2)
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centered at —d with radius

&=

€
—
()|

Also, since D(0,€) does not contain any of the points ¢(z;), for j > 2, it follows

Pt (e)+d =d

o(z2)

that P(p_(5152) (D(0,€)) does not contain any of the ¢(z;), for j > 1. So, if
1
|lw+d| >d € T
p(z2)] ¢
then
|p(2)] —
| Pyzyy (W) = W|w+d|d '
. d—1
_ leta)| e
— 1
d*= p(z2)|4
= lp(as)[acd
> edeld as |p(x2)] > €
= e
€
Hence, for |P;(1m2)(z) + d| > d———, we have
|o(2) 4
_ ! 1 1
‘< o) () <<

f— ) . .
Pl (Poi @) ‘
Then, if z € D (—d, d(%)ﬁ) lies within the disc of radius e/*! about z;;; and

2| > ¢ then Z = P (2) lies in a disc about ¢(z;) = P

p(z2 w(;2)(@($]+1)) of radius

1 . .

—e/tt = ¢l Clearly these preimage discs cannot intersect since their images did not
€

intersect. O

Lemma 6.3.2. Let € be as in Proposition 6.3.1. Then,

(d d <2d>d11>3 (2d)d11
S (e <(22) .
€ € € €
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Proof. Since 2d > ¢, we have

2d 2d\ T
2 (_ o1
€ €
_, 1(ud %1>1
2 € 2
_ ( %>1+1 2d\ &1
€ 2 2\ €

O

This invariant subset is characterized by the fact that the distinguished points
¢(z;) remain bounded way from each other. Actually, this is clear for the distin-
guished points that lie completely inside different feet, since by construction, ¢(D;)N
©(D;) = 0. For ¢ € Ts.,.» we further know that, under iteration of the spider map-
ping, the points on the boundaries of the feet, namely ¢(z1) = 0, ¢(x2), ... ,p(zn),
do not coalesce and that the feet do not become arbitrarily small (in the Euclidean
metric).

Now, we come to the main theorem of the thesis. This result is a version of
Thurston’s algorithm (see [9] or [15]) in which we do not have post-critical finiteness.

First, we will need a lemma.
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Lemma 6.3.3. Let ¢y and @1 be any two spiders in Ty ,. Then, there ezists 6 > 0

and a path v connecting @y to @1 and contained in 7;‘;.

Proof. Note that ¢o(UD;) and ¢;(UD;) are all contained in the disc centered at

2d\ &1
—d of radius d (—d> . Pull each feet of each spiders back along its | eg until
€

_1
the last intersection of the leg with the circle < |z +d| =d (?) dl} . Now, move
the feet into the standard position and we will have obtained a path connecting
the two spiders. The dist inguished points of the spiders, {¢k(2;)} ey sy 2. Will
remain bounded apart throughout this process and we may choose ¢ in terms of this
distance. Further, all of the feet of the spiders along this path will stay within the

2d\ 71
disc centered at —d of radius d <7) ) O

Proposition 6.2.2 (on the strict contraction of the derivative) shows that at any
spider the norm of the derivative is less than one, but this does not guarantee that
we have global uniform contraction constant. We will show that the norm of the
derivative depends only on the position in moduli space, which is the space of feet.

Consider the space M(|JD,) which is the set of maps ¢ : |JD; — C which are
univalent on [J D;, modulo the equivalence relation: ¢; ~ @9 if 3 = Ay on |J D;.
This is the moduli space of Spider Space and 7 : T, — M({JD,) is a universal
covering space. M(|JD;) has the Teichmiiller topology induced from the quotient
map from Spider Space and since Spider Space is the universal covering of moduli
space, the tangent space 1,7y, is the same as Ty, M (U D;)-

Let ¢ € T;,. After the first iteration of the spider mapping, og,(¢) € Ty, is
univalent on (J D;. Note however, that prior to restriction to a subdisc, the spider

algorithm produces a map that is univalent on a disc D/ which compactly contains
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Dy. As we iterate the spider mapping, this property (of restriction to subdiscs) prop-
agates to the other feet. So, after IV iterations, the feet of aé\,’“(cp) is the restriction
of a map ¢ which is univalent on J D, compactly containing J D;. Further, since
we are working in 7;‘;, Proposition 6.3.1 implies that the image of ¢ is contained
in a disc of fixed radius R about the origin and that [¢/'(¢;)| > €, for some €' > 0,
where c¢; is the center of D;. The delicate inequalities in Proposition 6.3.1 actually
apply to the branches of P(;(;z) before the restriction by the spider mapping and so
the estimates there apply to this space of univalent maps on the larger discs. Since
this proposition provides a fixed compact set that contains the feet of all spiders
in 7;% and that all feet retain a definite fixed size under iteration, the conditions
on 7 follow easily. When working in the invariant subset of Spider Space, the feet
retain a definite size upon iteration of the spider mapping and so there is a definite
positive derivative at the centers of the feet. Hence, the derivative condition for
follows. This argument is much in the spirit of the Koebe 1/4-Theorem.

The fact that the feet are compactly contained in bigger discs actually follows
from the removal of annuli of fixed size. The spider mapping discards an annulus
on each iteration based on the distance between points on the orbit of ¢(z1) = 0.
Since we are working in 72” and Proposition 6.3.1 guarantees that the points along
the orbit are separated from 0 by at least § > 0, the annulus that is removed has a
definite fixed size.

Let ¥ « be the space of univalent mappings ¢ : | J D’; — C such that the image of
1 is contained in Dg, the disc of radius R about the origin, and [¢’(c;)| > €, where ¢;

is the center of D;. Endowing this space with the topology of uniform convergence
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on compact subsets, U, is a compact space as is seen from the normalization
conditions on ¢ € ¥p .. This compactness is the same argument as in the proof of
the compactness of the univalent maps of the unit to itself with the derivative at

the origin normalized. We now come to one part of our compactness argument.

Lemma 6.3.4. Consider the map o : Vo — M(JD;) given by o) = 9¥|yp,-
Then, « is a continuous map with respect to the topology of uniform convergence on

Vg e and the Teichmiiller topology on M({ D).

Proof. In general, uniform convergence on compact subsets does not imply conver-
gence in the Teichmiiller topology since problems arise on the boundary of the discs
D’. In this case, however, there is no problems at the boundaries of the D; since we
have the restriction of univalent mappings to compactly contained subdiscs of the
D;-. In fact, such a restriction is a compact mapping and we find that the restricted
maps are analytic on the boundaries of the D, (again by the fact that these discs

are compactly contained in the D.) O

Next, consider the map 7 : 7;5,“ — Wg, given by restriction to [ J D}. Note that
this map is well-defined only after the N** iterate of the spider mapping since prior to
that we do not yet have the spider mapping as a restriction of univalent mappings on
larger discs. Clearly, 7 is the forgetful map that omits the combinatorial information

and projects onto the D’. We now have
Lemma 6.3.5. The image of 7;‘5“ 1 moduli space is compact.

Proof. After N iterations of the spider mapping, we have the following commutative
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diagram

3 T,
7;,/1 7;7/J

| s
Upe —— M(UD;)

Again, it is important to realize that, after N iterations of the spider mapping,
the spider algorithm produces mappings that are univalent on discs compactly con-
taining the feet. Hence, the map 7 is well-defined. Then, U = 7(7,) = 7(o(77,)) =
a(7(Ty,)) = a(Ype). Since Ug o is compact and « is continuous, it follows that

U= a(Vpge) is compact. O

So, while 7;% is not compact, its image in moduli space is compact. Further,
the norm of the derivative only depends on 7 () since the norm of the co-derivative
P, depended only on the preimages of the feet and hence the values on UD; This
is the content of Lemma 6.1.1. Thus, the derivative depends only on the geometric
information encoded in the feet and the position in moduli space. Since we have
seen that we are working in a compact subset of moduli space, our pointwise bound

on the derivative will become a uniform bound.

Proposition 6.3.6. There exists a constant Cs < 1 such that the norm of the

derivative is bounded above by Cs on all of 72“.

Proof. Since the norm of the derivative depends only on the position in moduli space

and the image of 7;% is compact in moduli space, we have that

Cs = max ||d,ol| < 1.
= max [ld,o

The maximum is achieved since we are in a compact subset of moduli space. O
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Theorem 6.3.7. Suppose that 0 is periodic under 6 — df and that 0 < |u| < 1.
Then, for each 0 € Z, op has a unique fized point which can be found under iteration

of the spider mapping.

Proof. Let ¢o € Ty, and set ¢, = o™ (¢o) for m € N. By Lemma 6.3.3, there
is a 0 > 0 and a path vy such that -, joins ¢y and ¢; and is contained in '72“.
Let L denote the length of 7y, which is finite as we may assume that v, is a C*
curve. Set 7y, = 0™ (). By Proposition 6.3.1, ¢,,, and ~,, lie in 7;[,5;1 for each m. By
Proposition 6.3.6, there is a constant C; < 1 such that length(vy,,) < C{*L. Thus,
the spiders ¢, form a Cauchy sequence.

Note that the univalent maps ¢n,|p, are uniformly bounded by d + d (%) o ,
and hence, form a normal family. Thus, ¢,|p, converges uniformly on compact
subsets to a limit ¢ |p, that is either constant or univalent. This limit cannot be

constant since distinguished points in ¢,,(D;) are uniformly bounded apart (inde-

pendent of m).

With this theorem, we can answer Question 1 in the affirmative.

Corollary 6.3.8. With 0,1 as in Theorem 6.3.7, there exists d — 1 polynomials
Py, a(2) = A (1 + g)d such that Py, 4 has an (attracting) cycle of length equal to the

period of 0 with multiplier p, and having the specified combinatorics from 6.

Proof. By Theorem 6.3.7, there exists a unique fixed point [ ] of 0. By Theo-
rem 4.5.1, we have a desired polynomial by setting Ay = @y (22). Finally, Theo-
rem 4.4.1 implies that there are exactly d — 1 classes [¢g,00] determining the d — 1

polynomials. O



Chapter 7

Extension to Exponentials

7.1 Introduction

In this chapter, we want to extend the generalized spider algorithm for polynomials
to the family of mappings, E\(z) = Ae®. In particular, we describe a variant of the
algorithm, found in the previous chapters, which can be used to locate parameters

within hyperbolic components of the parameter plane of E).

7.2 Exponential Dynamics

We will later prove results about hyperbolic components of the parameter space for
the family of mappings F,(z) = Ae*. This section contains the basic theory of the
iteration of exponential maps of the sphere, highlighting some of the similarities and
differences between the iteration of rational maps and the iteration of exponentials.

One of the main differences arises from the point at infinity. From a dynamical point

33
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of view, oo is no different than another other point on the sphere when iterating
polynomials, whereas oo is an essential singularity for E)(z). By a theorem of Picard,
we know that any neighborhood of co is mapped over the entire plane by F, missing
at most one point, and taking all other values infinitely often. This is a stark contrast
with polynomials.

As we have seen with rational dynamics, the critical points play a distinguished
role in determing the dynamics of rational maps and the topology of their Julia sets.
Since F,(z) has no critical points, we look to asymptotic values to play the role that

critical points played.

Definition 7.2.1. Suppose that f : C — C is an entire transcendental function. A
point w € C is called an asymptotic value for f if there exists a continuous curve

v(t) such that

lim y(t) =00 and tllglo fy(t) = w.

t—o00

For example, 0 is an asymptotic value for E,. We will also refer to 0 as the

singular value for E).

Theorem 7.2.2. Suppose that f is an entire transcendental function and that z
lies on an attracting or parabolic cycle for f. Then, the orbit of at least one critical

point or asymptotic value is attracted to the orbit of zg.

Thus, to understand the attracting cycles for the exponential, we need to follow
the orbit of 0. Unlike the polynomial case, there is no nice dichotomy based on the
fate of the orbit of 0. If the exponential has an attracting cycle, then the basin

of attraction of this cycle serves as our analogue for the filled-in Julia sets from
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the polynomial cases. Clearly, this basin is open and it is also dense in the plane.
We note that the complement of the basin is composed of an uncountable set of
curves(hairs), each of which is homeomorphic to a closed half-line.

We now focus on the dynamics of the exponential family , giving a topological
analysis via symbolic dynamics.

Let C- = C — R, where R™ = {z |z < 0}. Let A = re? € C~. Then, we define

horizontal strips Ry(¢) in C by
R\({)={z€C|(2¢ —1)mr— 0 <Imz < (2 + 1) — 0}.

Note that the boundaries of the strips are the pre-images of R~ under E), and
that Ey : Ry(¢) — C is an analytic homeomorphism. In particular, Ej|g, ) covers

each Ry(k), for k # 0.

Definition 7.2.3. Let z € C. Define the itinerary of z to be the sequence of integers
S(z) = s9s152.- ..

where s; = k if E(2) € Ry(k).

An itinerary, S(z), is bounded if sup; |s;| < co. We restrict our attention to those

itineraries which are bounded.

7.2.1 Hairs in the Dynamical Plane

Definition 7.2.4. A tail of a hair with external address 6 = s¢s18--- is a contin-

uous curve hyg : [1,00) = C satisfying

1. For each t > 1, the point hyg(t) has itinerary 6.
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2. limy, oo Re (ES™(hag(t))) = +o0.
3. limy_, o Re(hyg(t)) = +o0.

In simple terms, a tail of a hair is a curve of points stretching to infinity, for
which all points on the curve share the same intinerary with respect to the partition
given in Section 2. By condition 2 of the definition, a tail of a hair lies in the Julia
set Jg,. We use the term external address to provide an analogy with external angles

for polynomial maps. The following result is proved in [30].

Theorem 7.2.5. For every A € C* and every bounded sequence 6 = sysy - , there
exists a tail of a hair with external address 0. Furthermore, there is a positive R,
depending on A and 0, such that every z € C with itinerary 6, Re(E{"(z)) > R for

all n, and Re(E{"(z)) — +00 as n — +oo lies on that tail of a hair.
Note that it is possible to parametrize the tail of a hair by
hae(t) =t —log X + 2mise + O(e ") (7.1)
such that it satisfies the dynamical functional equation

hao(0) () = Ex(hao()) (7.2)

where o is the one-sided shift. Then, any tail of a hair may be pulled back via 7.2
infinitely often, unless it runs into the singular value. The resulting pull-back is
called a hair.

The following may be found in [30].

Theorem 7.2.6. If the singular orbit of E\ is bounded, then every periodic hair

lands at a periodic point.
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7.2.2 Hyperbolic Components in Parameter Plane

The parameter plane for the complex exponential family E) is both complicated and
beautiful, with a rather strong connection to the polynomials that we have studied

in previous sections. See Figure 7.1.

Figure 7.1: The parameter plane for E)(z) = Ae?.

As with the polynomial families that we have studied, the bifurcation diagram,
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B,, for the exponential family is a picture of the fate of the orbit of 0. The black
points in Figure 7.1 correspond to A values for which the critical orbit is bounded,
while white points coorespond to A values for the which the critical orbit escapes to
infinity. We now begin describe the components of B).

Let Cy = {X € C: E) has an attracting cycle of period N} . Since each Cy is
open, Uy>1Cy is open. A major conjecture is that By = Uy>1Ch.

Since the orbit of 0 must be attracted to an attracting or parabolic cycle, it
follows that for each A, E) has a unique attracting periodic point, say zy = 2o(\).
Set 2;(\) = EJ(z) for j =1,...,N — 1 and define the multiplier map x : Cy — D
by x(A) = (EY)'(20). Since 2()\) varies analytically with A, the map y is analytic.

The region C' is special as it is the only bounded set among the Cy. It also has
the familiar cardioid shape from the polynomial family. In fact, this is the set of

parameters for which F, has an attracting fixed point. Note that for |u| < 1,
Ex(z) = Xe* =z and E)\(2) = A’ =
give the following parametrization of C :
A= pe .

Furthermore, as u travels around the unit circle, A wraps once around the bound-
ary of C; and at each root of unity, A € 0C yields E) with a fixed point of multiplier
an N root of unity. At these parameter values, there are the bifurcations that we
see in B) in which one component of Cy meets C;. We now describe the components

of CN.
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Proposition 7.2.7. For N > 2,
1. each component of Cy is simply-connected,
2. each component of Cy s unbounded, and

3. for any connected component W of Cy, the multiplier map x : W — D* is a

universal covering map.

A proof of this proposition may be found in [8].

Now that we have proved the convergence of the spider algorithm for polynomials
with an attracting cycle, we extend to exponentials with attracting cycles. Of course,
we must make adjustments, but the set-up from the polynomial case was deliberately
constructed with the exponential case in mind.

Note that for both of these families of functions, this is a substantial gener-
alization of a case of Thurston’s theorem about the topological characterization of
rational functions; see [10]. We have removed the restriction the these maps be post-
singularly finite. The trade-off is that we now must work with infinite dimensional

Teichmiiller spaces.

7.3 Exponential Kneading Sequence

Suppose that we want to find a parameter A € C* such that the map E\(z) = \e?
has an (unique) attracting cycle of length N and with combinatorics specified by a
periodic external address, say = s¢s1 - - - . In analogy with the polynomial case, we

need to find the pre-angles of this # and assign a dynamically significant kneading
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sequence to this address. However, 6 is not an angle and so there are no pre-angles,
but there is an appropriate analogue.

@ and consider the

In the polynomial case, we conjugate to the map z — 2z
d—tupling map on angles in order to determine pre-angles. This then gives a par-
tition of the plane which leads to itineraries and kneading sequences. In the expo-

nential case, we need the one-sided shift on infinitely many symbols. Note that an

external address is an element of the set of infinite sequences
Y ={sps182---:8; €L}

and the shift map o : ¥ — ¥ is given by
o(sps182+ ) = S189- - .

Note that X is a topological space with elements ordered lexicographically and
o is a continuous map on this space.

Thus, given an external address f = sgs; - - -, it is easy to see that the preimages
of 6 under o are the elements of the set {jsgs1 - - - }jeZ- We can use these elements to
partition 3. Let (s,7) denote the open interval of elements ¢t € ¥ with r < ¢ < s in
the lexicographic ordering. Then, the intervals (56, (j + 1)#) naturally partition the
space Y. We will relate this partition of the symbol space to a partition of dynamical
plane given by curves landing at the the singular value.

Let 0 = sgs1--- be a periodic external address. There is exactly one interval
(70, (j + 1)0) of the above partition which contains 6. In fact, one can check that 0
lies in one of the two intervals (so8, (so+1)8) or ((so —1)8, sofl). Denote this interval
by I, and label intervals above this interval sequentially with Iy, I5,... and label

those below with I 1,1 o,... . See Figure 7.2.
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Now, let 7 = tyt1 - - - be any other external address and label its orbit under the
shift map by the intervals above. This is called the itinerary of 7 with respect to

the 0 partition and it is denoted Iting(7). It is defined by
Tting(7) = 4¢i1iz--- where i, = m if 0°%(7) € I,.

It may occur that iteration of the shift map lands on the boundary of the interval
partition. In such a case, we label the itinerary with a boundary symbol. For

example, if 0°%(7) lies on the boundary between I; and I;,, then we write i, = jj;l.

Definition 7.3.1. The kneading sequence of an external address 0 is its itinerary

with respect to its own partition. That is, knead () = Iting(6).

For example, we see in Figure 7.2 that the kneading sequence for # = 0102 is
the repeating sequence OlOf, whereas the itinerary of 7 = 001 with respect to 8 is
(—1)00.

Clearly, the only sequences that contain a boundary symbol are those that even-
tually map onto # and if we consider only periodic sequences, then the only ones
that contain a boundary symbol are the finitely many shifts of #. Furthermore, if
f is periodic of period N > 1 then the only itinerary that has a boundary symbol
in the N position is @ itself. This leads us to the following lemma on symbolic

dynamics.

Lemma 7.3.2. For any periodic external address 0 € X and any periodic itinerary
a € X, there is a periodic external address T € ¥ such that Iting(7) = . The number

of such sequences T is always finite.

Proof. A proof a more general result may be found in [30]. O
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Armed with the kneading sequence associated to a periodic external address and

Lemma 7.3.2, we can prove the following.

Proposition 7.3.3. Suppose that Ey has an attracting periodic cycle of length N.
Then, every repelling periodic point is the landing point of at least one and at most,

finitely many periodic hairs.

Proof. The statement that there are at most finitely many landing hairs is the same

proof as in the polynomial case and is omitted. See [21], for example. O

We now suppose that A € C* such that E) has an attracting cycle of length,
say N. We will define a partition of the dynamical plane in which every repelling
periodic point is determined by its itinerary with respect to this partition.

By Proposition 7.3.3, there every repelling periodic point is the landing point of
a periodic hair. Further, by a theorem of Schleicher [30], there is a unique repelling
periodic point, say (, on the boundary of the Fatou component U; containing the
singular value which is fixed under ES" and at which at least two periodic hairs
land; such a point is called a characteristic point. Denote these hairs by h; and hs
with h; being the hair with smaller external address, with respect to lexicographic
ordering. Next, let I' by any simple curve within U; which connects { to the singular
value 0 and is invariant under E5". Such a curve always exists: take infinitely many
inverses of F, that extend 0. Let C = h;UT'. Since C terminates in the singular value
0, the inverse images of C partition the plane into sectors that are 274 translates of
each other. There is a unique sector which contains 0; label it by Sy. Label those
sectors above Sj sequentially with S, Ss, ... and those below Sy with S_1,5 o, ... .

With this partition, we can prove the following. As usual, we call the itinerary of
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a point with respect to this partition the sequence of sectors that the orbit of the

point visits.

Theorem 7.3.4. If Ex(z) = Ae* has an attracting cycle, then every repelling pe-
riodic point has a well-defined itinerary and no two such points have an identical
wtinerary. Further, a pertodic hair lands at a periodic point if and only if the hair

and point have identical itineraries.

Proof. Let z1,29,... and wy,ws,... be two periodic orbits which share the same
itinerary tit5... with respect to the partition given above. Let m be the least
common multiple of the orbit periods of z; and w; so that z; = 2,11 and w; = w413
we cannot a priori assume that there orbit periods are equal.

Let U =C— (W) , where h; is the hair described prior to the state-
ment of this theorem. Then, U is an open set and by setting U; = U N S;, we find
that each U; is open and that most U; are connected. If, however, multiple rays
land at ¢, then by Proposition 7.3.3, U; is composed of finitely many connected
components. Each connected component of a given U; carries its own hyperbolic
metric and for every j, there is a branch of E;' mapping U into U;. Further, the
restriction of any such branch to a component of some U, is a contraction in the
hyperbolic metric. We must now consider two cases.

Case 1: There is an index k for which z; and w;, are in the same connected component
of Uy, .

Since z; and wy have the same itinerary, there is a common branch of E) !

mapping zx to zx_1 and wy to wy_; and this pull-back shrinks the hyperbolic distance

between these points. Repeating this process N times, we return to the points z
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and wy, but there hyperbolic distance is reduced. This is a contradiction and hence,
z1 = wy. Now clearly, the period of the itinerary must divide the period of the orbit.
If it strictly divides the period of the orbit, then we have two periodic points with
the same itinerary which we just showed cannot occur. Hence, the period of the
itinerary and the period of the orbit must be the same.

Summing up, any two periodic points must have different periodic itineraries and
the period of the orbit of the point equals the period of the itinerary. Since F, has an
attracting cycle, the orbit of the singular point is bounded and by Proposition 7.3.3,
any periodic hair lands at a periodic point. Clearly, the itinerary of the hair and
its landing point must be the same. Therefore, any repelling periodic point is the
landing point of any ray with the same itinerary. This completes Case 1.

Case 2: The orbits of z; and wy, are never in the same connected component of Uy, .

If z;, and wy are in different connected components of Uy, , then they must be
separated by hairs landing at some forward image of (. Since the itineraries of z
and wy, are the same, z;_; and wi_; both lie in the same strip S;,_, and the inverse
images of the hairs separating z; and wy must lie in this sector. Now the number of
hairs that separate z;_; and wg_; can only get fewer if their inverse images are in
different sectors, but their number never increases. Thus, z, and w;, can forever be
in different connected components of Uy, only if their itinerary is the same as that
for the forward image of ¢ in Uy, . Denote this forward image of ¢ by (.

Now, connect 2z, to a linearizable neighborhood of (; by a curve of finite hy-
perbolic length. Successive pull-backs will shrink the linearizable neighborhood to

(x, while the hyperbolic length of the curve will not have increased. Hence, its
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Euclidean length must be zero. Thus, z; = (}. Similarly, wy = (x = 2. Case 2 is

proved. O

7.4 Exponential Spider Space

As we have seen, hairs for exponential maps stretch to +0c and in a far right plane,
they do so with bounded imaginary parts. Thus, it makes sense to model our Stan-
dard Exponential Spider by horizontal radial lines from points of the postsingular
set along with discs attached. Let 6 = sgs;--- be a periodic external address of
period N. List the orbit of # under the shift operator ¢ in its proper lexicographic

ordering. Thus, we get list of NV elements:
oM (0) < o™ () < --- < o°V-1(0).

If § = 0°(f) occurs as the j* entry in this list, renumber the list so that @ is the
0™ entry in the list and renumber the entries before # sequentially with negative
numbers and those after § with positive numbers. Then, for j = 1,..., N, set z;
equal to the order in which ¢7=1(f) appears in the renumbered list. So, z; is always

equal to 0. For example, the orbit of # = 0110 satisfies
a%(0) < o°°(0) < o°1(0) < o°%(0).

Instead of calling 0°3(f) the first element of the ordered set, we call it the —1%

element so that # becomes the 0" element of the list. Then,

I = 0, To = 1, T3 = 2, Ty = —1.
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Definition 7.4.1. (Standard Exponential Spider)

The Standard Exponential Spider, &Sy, is the set

(U)o (Ur) o

where D; is the disc centered at —% + x4 with radius % and v; = {t+z;i:t>0}.

The disc D; comes with a set of distinguished points which are determined by .
These points are determined by multiplication of x; by u with respect of the center
of D;. This is exactly the same as in the polynomial case. (See Chapter 4.)

As in the polynomial case, our standard exponential spider resembles a fat-footed
spider with legs stretching to infinity, with the noticeable difference here that the legs
approach infinity along bounded imaginary parts. Since the spiders defined in the
polynomial case used little about the fact that we were working with polynomials,
much of the work there follows through to the exponential spiders. Hence, we do

not re-prove those facts as they appear in the text.
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Figure 7.2: Standard Exponential Spider with external address 0102.

Definition 7.4.2. (Exponential Spiders)

An exponential spider is a continuous injective mapping ¢ : ESp, — C satisfying:
1. ¢ 1is univalent on UD;,
2. ¢(0) =0, (o) = o0, and
3. @ preserves the order of the legs at oc.
4. For each j =1,...,N, the diameter of p(D;) is less than 2m.
We denote the set of exponential spiders by 87‘2,“.

The fourth condition above is necessary since we will apply inverse branches of
exponential mappings to these spiders, and we want these branches well-defined.
Once again, we refer to Up(D,) as the feet of the spider and to Up(v;) as the legs

of the spider.
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Then, the Ezponential Spider Space is the quotient
gﬁ:u = grg,/t/ N7

where (1 ~ ¢y if there are scalars a; € C — {0} such that ¢1(2) = o;pa(z) for

z € |UD; and ¢ is isotopic to ¢y el o1 (| D;).

Theorem 7.4.3. (Properties of £7 )
ETy,u 15 a contractible complex Banach manifold and the tangent space to Ty, at ¢

is Zy = Qy,, where Z, and Q, are as in Chapter 5.

Proof. Note that the only difference between the definition of exponential spider
space and polynomial spider space is in the direction in which the legs approach
infinity. Since this fact was not used in proving this theorem in the polynomial case,

the same proof works here. O

7.5 Exponential Spider Mapping

Now, we define the spider mapping o¢ : €7y, — ETy,, much the same as in the
polynomial case. Set A = ¢(x3). Since the leg ¢(y1) terminates at 0, the (infinitely
many) preimages of this leg under E)(z) = \e® stretch from —oo to +00 spaced at
intervals of 27i. Thus, these preimages naturally partition the plane into sectors.
Note that 0 lies in the interior of one of the sectors by the injectivity of spiders:
the only way that 0 could lie on a partition boundary is if A lies on ¢(v;), which
injectivity prohibits. Label the sector containing 0 by Sy, label the sectors above Sy

sequentially by Si,S5,..., and label those below Sy sequentially by S_1,S _,....
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Notice that this is much the same partition of the plane that was used in the proof
of Theorem 7.3.4.

Let knead(f) = ajay---an. For j =1,..., N —1, let ¢(z;) be the preimage of
¢(w;41) that lies in sector S,;. The leg and foot attached to ¢(z;) is the preimage
of the (j + 1) foot and leg of ¢ that contains ¢(z;). To define the point @(zy),
we note that ay = “; for some integer /. As in the polynomial case, we choose the
preimage of ¢(zx,1) which lies in sector S;. We now define the final foot and leg of
?.

Let A be the image of the annulus

|| 1
—<|lz—=| <0 D
{Z 3 |Z 3| Cc Dy

under ¢. Then, ¢(Dy) is the preimage of D = ¢(D;) — A which has ¢(xy) on its
boundary. Since the distance from 0 to 0D is bounded away from 0, it follows that
@¢(Dy) lies in a right half-plane {Rez > v}.
The final leg of ¢ will be composed of the partition curve C between sectors S,
and Sy, 1 and a curve from —oo to ¢(xy). Let T’ be any simple curve connecting 0 to
. lul

1
Tyy1 in {z Y <|z-— g\ < 0} C D, with looping defined as in Chapter 4. Then,

E;'(p(T)) is a curve from —oo to @(zy) and the final leg is

@(yv) == CU By (o(I)).

Since we are only interested in the legs up to homotopy, we may replace @(yy)
with an equivalent leg which only goes as far to the left as {Rez = v} and then
loops into @(xy).

Thus, we have specified a new spider ¢ and o¢ : Ty, — £Ty,, is a holomorphic

map given by oz((¢]) = 3.
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7.5.1 Fixed Point of Exponential Spider Mapping

We now show that if the spider mapping has a fixed point, then we have found a
parameter A and a parametrization of the unique attracting cycle with combinatorics

defined by the given external address.

Theorem 7.5.1. Suppose that [ps] is fized by og. If ¢ := limk — 00Yeo(T14kN),

then
EN(¢) =¢ and  (ESN)(Q)=p
Moreover, the j™ leg of oo is homotopic the the hair at external address o9=1(9),

where o s the shift map on infinitely many symbols.

Proof. Set A = @ (x2). Since ¢y is fixed, we have that @ (z;) = Yoo(z;), for all j.

By construction, Ex(Peo(2;)) = @oo(Zjt1)- SO,

EN(Q) = BN (lim puolrian))
= E;\N (hm @oo(l‘1+k]v)>
k— o0
= lim B3N (Poo(z144n))
k—00
= kllg)lo S0($1+(k+1)N)

= (.

Also note that

Poo oD uir) © EXY 0 Qoolom1(D(c,r)) = K-
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7.5.2 Convergence to a Fixed Point

We now show that og converges to a fixed spider [¢] under iteration. As in the
polynomial case, we need both a compactness and contraction statement to deduce
the existence of a fixed point of the exponential spider mapping. The uniqueness
of the fixed point follows from the fact that the Exponential Spider Space is con-
tractible. We begin with the compactness statement.

As in the polynomial case, when an exponential mapping has an attracting pe-

riodic point of period N, there is a constant C' = C'(u) such that
|EY*(0)] > C, for all n.
This is easy to see by looking at the attracting cycle under linearizing coordinates.

Lemma 7.5.2. Let C be as above and let 0 < e < C/2. Define €Ty, C Ty, to be
the set of spiders for which the discs centered at (z;) with radii € are all disjoint

for j = 1. Then, &y, is invariant under the spider mapping.

Proof. Set A = p(x3). Note that ¢(x;) = 0 and that

EyL(D(0,¢)) = {z : Rez < log <ﬁ) } .

That is, the preimage of a disc about zero contains some left half-plane. Since D(0, ¢)
does not contain any of the points ¢(z;), for j > 2, it follows that E; " (D(0,€))

does not contain any of the points ¢(z;) for j > 1. So, if Re(w) > log (&) , then

B} (w)] = [Ae”| = |XeR > wﬁ =«

Hence, for Re(E}'(z)) > log (&) , we have

1 1
<_

‘(E,\_l)l(z)‘ = W -
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Now, if z lies within the disc of radius e/*! about ¢(x;11), then Z = E'(2) lies in
1 . .
a disc about ¢(z;) of radius —€/t! = €. If there is were a point in the intersection of
€
the discs in the preimage, then the image of such a point would lie in the intersection

of the image discs, which is a contradiction. O

Now, we discuss the contraction, showing that F) is contracting for an infinitesi-
mal metric on the tangent space to spider space. More precisely, as in the polynomial
case, we have that the derivative (d,0¢)* is dual to the push-forward operator (E)).

on (3. The push-forward is defined by

(E)\)*q = Z L*CI:
L

where the sum is taken over all branches, L, of E/\’l.
Lemma 7.5.3.

1B ={ sup M} <1

ae@z-o 4l

Proof. By the triangle inequality, we easily see that

[(Ex)qll <1

and by virtue of all the preimages that we discard in defining the spider mapping,

we have the statement of the lemma. O
Combining these lemmas yields
Theorem 7.5.4. The spider mapping og has a unique fized point, [Poo)-

Theorem 7.5.5. For any N > 3 and any bounded periodic sequence 6 = sy81. .. ,

there is a hyperbolic component W in the parameter space for Ex(z) = Ae® such that
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for each A € W, the hair hy g lands at the characteristic repelling periodic point on

the boundary of the Fatou component containing 0. Any such hyperbolic component

s uniquely specified by the sequence 6.

Proof. Clearly, by Theorem 7.5.1, the existence of a fixed point of the spider mapping
proves the first part of the corollary. Uniqueness follows from the uniqueness of

external addresses, as W can be encoded by the hair of address 6. O
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