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Abstract

The number of PL-homeomorphism types of combinatorial manifolds in a fixed
dimension with an upper bound on g2 is finite.

At the intersection of topological and enumerative combinatorics is the relationship
between the f -vector of simplicial complex and its topology. The Euler-Poincaré formula
is perhaps the oldest such result. More recently, the complete characterization of all
possible f -vectors of Cohen-Macaulay complexes [13] is another example.

Combinatorial manifolds (also called combinatorial triangulations), simplicial com-
plexes whose vertex links have a common subdivision with the boundary of the simplex,
are a natural class of spaces in which to study this type of question. Every smooth
compact manifold has such a triangulation which is unique up to PL-equivalence [17].
However, the sheer variety of topological phenomena which occur in manifolds makes
these types of questions much more difficult. For instance, there is no Turing machine
which given as input an arbitrary five-dimensional combinatorial manifold ∆ and any se-
quence (f0, . . . , f5) of positive integers, outputs whether or not there exists a triangulation
∆′ which is PL-homeomorphic to ∆ and has exactly fi faces of dimension i. Since the
only combinatorial 5-manifold with the f -vector of ∂∆6, the boundary of the 6-simplex, is
∂∆6, the existence of such a Turing machine would allow the construction of an algorithm
which can determine whether or not a given combinatorial manifold is PL-homeomorphic
to ∂∆6. As shown by Novikov, this is impossible [4, Section 10].

Our focus is on affine invariants of f0 and f1. For α, β, γ real numbers let Lα,β,γ(∆) =
αf1 + βf0 + γ be an affine invariant of the number of edges and vertices in a simplicial
complex. What qualitative information does a lower or upper bound on Lα,β,γ give? For
instance, suppose α = 0. Then knowledge of L0,β,γ is equivalent to being given the number
of vertices. A lower bound for f0 reveals no topological information since repeatedly sub-
dividing a facet increases the number of vertices without changing the PL-homeomorphism
type of the complex. An upper bound for the number of vertices evidently restricts one
to a finite number of complexes. At that point attention changes to quantitative results
which delineate exactly the possible spaces and/or restrictions on topological invariants.
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A good example of this is due to Brehm and Kühnel. They proved that if ∆ is (d − 1)-
dimensional with d ≥ 4 and f0 < 2d + 1, then the fundamental group of ∆ is trivial
[3].

When α 6= 0 we can, by appropriate scaling and translation, assume that α = 1 and
γ = 0, so our invariant is of the form Lβ = f1 + βf0. From a qualitative point of view
there are three cases to consider: 1) β < −d, 2) β > −d, 3) β = −d, where d = dim ∆+1.

1) β < −d. For sufficiently large N, any PL-manifold has combinatorial trian-
gulations with N vertices and

(
N
2

)
edges [15, Corollary 5.15]. Hence a lower bound for

Lβ carries no topological information. Similarly, since β < −d, repeatedly subdividing a
facet with one new vertex produces triangulations with Lβ tending toward −∞. Thus an
upper bound for Lβ also says nothing about the topology of ∆.

2) β > −d. As in the first case, large two-neighborly triangulations imply that a
lower bound for Lβ does not impart any topological information. Write β = −d+ε, ε > 0.
Then a lower bound for Lβ is a lower bound for (f1 − df0) + εf0. By Theorem 1.1 below
f1 − df0 ≥ −

(
d+1

2

)
. Therefore an upper bound limits the number of vertices and there are

only a finite number of possible complexes.
3) β = −d. Our main result, Theorem 2.1, says that for a given upper bound

there are only finitely many PL-homeomorphism types. As repeatedly subdividing a facet
with one new vertex does not change Lβ, there are infinitely many possible complexes.
So, up to translation and scaling, L1,−d,0 is the unique affine invariant involving f0 and f1

which for a given upper bound admits infinitely many combinatorial manifolds, but only
finitely many PL-homeomorphism types.

For historical reasons we will study L1,−d,(d+1
2 ). This particular invariant is usually

called g2. It has algebraic interpretations (Theorem 1.5 below) and connections to frame-
work rigidity [6].

1 Background

Many of the results in this section hold in much more generality than we state. Throughout
this section ∆ is a combinatorial manifold whose vertex set is V = {x1, . . . , xn} and
whose dimension is d− 1. So, maximal faces, or facets all have d vertices. The geometric
realization of ∆ is |∆| and we say ∆ is PL-homeomorphic to a space X if |∆| is. The link
of a face F ∈ ∆ is

lkF = {G ∈ ∆ : F ∪G ∈ ∆, F ∩G = ∅.}

The f -vector of ∆ is (f−1, f0, . . . , fd−1), where fi is the number of i-dimensional faces
in ∆. In particular, f−1 = 1 (corresponding to the empty set) and f0 = n. The h-vector,
(h0, . . . , h1) is defined by the functional equation,

d∑
i=0

hit
d−i =

d∑
i=0

fd−1(t− 1)d−i.
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The g-vector is (g0, . . . , gd) and is given by gi = hi − hi−1. Of particular interest is

g2 = f1 − df0 +

(
d+ 1

2

)
.

The first serious study of g2 in this setting was by Walkup [16]. He proved the following
theorem in dimension three and classified all three-dimensional combinatorial manifolds
with g2 ≤ 17. In addition to Theorem 1.1 here, the nonnegativity of g2 was also shown
independently by Gromov [5].

Theorem 1.1 [6, Theorem 1.1] Let ∆ be a combinatorial manifold of dimension at least
three. Then g2 ≥ 0. Furthermore, if g2 = 0, then ∆ is a stacked sphere.

A stacked sphere is any complex that can be obtained from the boundary of a sim-
plex by repeatedly subdividing a facet with one new vertex. Any stacked sphere is PL-
homeomorphic to the boundary of a simplex. Except for the boundary of the simplex a
stacked sphere always has at least one missing facet. A missing facet is a subset σ of V
with |σ| = d, σ /∈ ∆, but every proper subset of σ is a face of ∆. Two obvious ways for
∆ to have a missing facet is if it was formed via handle addition, or as the connected
sum along a facet of two other combinatorial manifolds. Starting with a combinatorial
manifold ∆′, we say ∆ is formed by handle addition from ∆′ if it is the quotient space
derived by identifying the vertices of two disjoint facets of ∆′ and their associated lower
dimensional faces and then removing the (open) identified facet. As long as the distance
in the graph theoretical sense between each pair of identified vertices is at least three, the
resulting complex is a combinatorial manifold. In this case we write ∆ = ∆′H . If ∆ = ∆′H ,
then the PL-homeomorphism type of ∆ is determined up to at most two possibilities by
the PL-homeomormphsim type of ∆′.

Connected sum along a facet is a similar construction. Let ∆1 and ∆2 be two (d− 1)-
dimensional combinatorial manifolds with disjoint sets of vertices. Identify the vertices
and their corresponding faces for two facets, one from each complex. Remove the (open)
identified facet and denote the resulting complex by ∆1#∆2. Then ∆1#∆2 is a com-
binatorial manifold and its PL-homeomorphism type is determined up to at most two
possibilities depending on the PL-homeomorphism types of |∆1| and |∆2|.

While it is clear that both of the above constructions leave a missing facet, the following
well-known theorem says that the converse also holds. For a detailed proof see [1].

Theorem 1.2 Suppose ∆ has a missing facet and is a (d−1)-dimensional combinatorial
manifold with d ≥ 4. Then ∆ was obtained via handle addition or connected sum along a
facet.

One advantage of studying g2 (as opposed to other scalings or translations of L1,−d,0)
is that it behaves very well with handle addition and connected sum along a facet. Direct
computation shows that g2(∆H) = g2(∆) +

(
d+1

2

)
and g2(∆1#∆2) = g2(∆1) + g2(∆2).

Another advantage of g2 is its connection to the face ring of ∆.
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Definition 1.3 The face ring of ∆ (also known as the Stanley-Reisner ring) is

C[∆] ≡ C[x1, . . . , xn]/I∆,

where I∆ ≡< xi1 · · ·xik : {vi1 , . . . , vik} /∈ ∆ > .

Since I∆ is a homogeneous ideal C[∆] is graded. We denote the degree i piece of C[∆]
by C[∆]i. A set Θ = {θ1, . . . , θd} of linear forms in C[x1, . . . , xn] is a linear system of
parameters (l.s.o.p.) for C[∆] if C[∆]/(Θ) is finite dimensional as a vector space over C.
If we write each θi =

∑
θijxj, then Θ is a l.s.o.p. whenever every d × d minor of (θ)ij is

nonsingular. The connections between h-vectors, g2 and C[∆] are given by the following
two formulas.

Theorem 1.4 (Schenzel’s formula) [12] If ∆ is a connected combinatorial manifold, then
for any l.s.o.p. Θ,

dimC(C[∆]/(Θ))i = hi +

(
d

i

) j=i−1∑
j=1

(−1)i−j−1βj−1(∆),

where the βj−1 are the Betti numbers of |∆|.

Theorem 1.5 [9] If ∆ is a connected combinatorial manifold, d ≥ 3 and ω is a generic
linear form, then

dimC(C[∆]/(Θ, ω))2 = g2.

The last preliminary result we need is Macaulay’s characterization of Hilbert functions
of homogeneous quotients of polynomial rings. The following weaker statement will suffice.

Theorem 1.6 [10] Let R = C[x1, . . . , xn]/I be a homogeneous quotient of a polynomial
ring. Set F (i) = dimCRi. If F (i) ≤

(
a
i

)
, then F (i+ 1) ≤

(
a+1
i+1

)
.

2 Finiteness

The goal of this section is to prove our main result.

Theorem 2.1 Fix d ≥ 3 and g ≥ 0. Then there are only finitely many PL-homeomorphism
classes of connected (d − 1)-dimensional combinatorial manifolds without boundary and
g2 ≤ g.

When d = 3, g2 = −6χ(|∆|) and hence determines the Euler characteristic of ∆, so
the theorem holds.

Definition 2.2 A triangulation ∆ is irreducible if it does not contain a missing facet
and has minimal g2 among all combinatorial manifolds PL-homeomorphic to ∆.
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For a fixed homemorphism type there may be no irreducible triangulations. For in-
stance, when d ≥ 4 all triangulations of Sd−2×S1 which minimize g2 contain at least one
missing facet [15, Theorem 4.30].

Proposition 2.3 For fixed g and d ≥ 4 there are only finitely many connected irreducible
(d− 1)-dimensional combinatorial manifolds ∆ with g2(∆) ≤ g.

Proof:
First we prove this for d ≥ 5.

Definition 2.4 Let V be the vertex set of ∆. Define

h̃i(∆) =
∑
v∈V

hi(lk v). (1)

Let ∆ be a pure simplicial complex. Then,[14, Proposition 2.3]

h̃i−1(∆) = i hi(∆) + (d− i+ 1)hi−1(∆). (2)

The above equation implies

h̃2 − h̃1 = 3h3 + (d− 2)h2 − 2h2 − (d− 1)h1

= 3(h1 + g2 + g3) + (d− 2)(h1 + g2)− 2(h1 + g2)− (d− 1)h1

= 3g3 + (d− 1)g2.
(3)

Now we show that g3 can be bounded from above by g2. Let Θ be a linear system of
parameters for C[∆] and let ω be a one-form such that the conclusion of Theorem 1.5
holds. Also, let F (i) = dimC(C[∆]/(Θ, ω))i. Then F (2) = g2 and F (3) ≥ (C[∆]/(Θ〉)3 −
(C[∆]/(Θ)2 = g3 +

(
d
3

)
β1 ≥ g3. The equality is Schenzel’s formula. Theorem 1.6 implies

that F (3) is bounded above by M(g2), where M(x) is a well-defined function. Hence
g3 ≤M(g2).

Suppose that ∆ has more than 3M(g) + (d− 1)g vertices. Since h2 ≥ h1 in each link,
equation (3) implies that for the link of some vertex v, h2 = h1. By Theorem 1.1 this link
is a stacked sphere. Let σ be a missing d− 2-dimensional face in the link of v. There are
two possibilities:

• σ ∈ ∆. In this case v ∗ σ is a missing facet in ∆. So ∆ is not irreducible.

• σ /∈ ∆. We retriangulate ∆. First remove v. Now introduce σ. This divides the
sphere which was the link of v into two spheres. Specifically, σ∪ lk v is the union of
two spheres, S1 and S2 whose intersection is σ. Cone off these two spheres with new
vertices v1 and v2. The new complex is a combinatorial manifold PL-homeomorphic
to ∆, has one extra vertex and d − 1 extra edges. As g2 has been reduced by one,
∆ is not irreducible.
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Therefore every (d−1)-dimensional irreducible triangulation of a homology manifold with
g2 ≤ g has at most 3M(g) + (d − 1)g vertices and thus there are only finitely many of
them.

To prove the proposition for d = 4 we rephrase [16, Lemma 11.12].

Theorem 2.5 [16] Let ∆ be an irreducible triangulation of a 3-manifold other than the
boundary of the 4-simplex. Then f1 > 4.5f0.

Since f1 = 4f0+g2−10, no irreducible 3-manifold can have more than 2g2−20 vertices.
�

Proof: (of Theorem 2.1) The proof is by induction on g and n. When g = 0 Theorem
1.1 implies that ∆ is a stacked sphere. If ∆ is irreducible then it comes from a finite
list of complexes. So assume ∆ is not irreducible. If ∆ does not minimize g2 among PL-
homeomorphic complexes, then apply the induction hypothesis. If it does, then it must
contain a missing facet. Hence it can be written as either ∆′H or ∆1#∆2. In the former
case g2(∆) = g2(∆′) +

(
d+1

2

)
. By the induction hypothesis there are only finitely many

possible PL-homeomorphism types for ∆′ and for each such ∆′ there are at most two
possible homeomorphism types for handle addition. In the second case, if g2(∆1) > 0 and
g2(∆2) > 0, then the induction hypothesis applies to both since g2(∆) = g2(∆1) + g2(∆2).
So there are only finitely many PL-homeomorphism types for ∆1 and ∆2 and again, up to
PL-homeomorphism, there are only two possible connected sums for each pair (∆1,∆2).
Lastly, if g2(∆1) > 0, but g2(∆2) = 0 (and by symmetry, if g2(∆2) > 0 and g2(∆1) = 0),
then ∆2 is a stacked sphere and ∆ is PL-homeomorphic to ∆1, so we can induct on the
number of vertices. �

3 Quantitative aspects and higher dimensional faces

In view of Theorem 2.1 it is natural to ask for specific topological types and/or invariants
associated to varying values of g2. By Theorem 1.1 g2 = 0 implies that ∆ is a stacked
sphere. The proof of Theorem 2.1 shows that irreducible complexes with g2 = 1 have at
most d + 2 vertices, and hence are PL-homeomorphic to spheres [2]. In dimension three
Walkup proved the following classification:

upper bound for g2 space

9 sphere
16 sphere or S2-bundle over S1

17 sphere or S2-bundle over S1 or RP 3.

Problem 3.1 For d ≥ 5 determine the smallest g(d) such that there exists a combinato-
rial manifold with g2 = g(d) and is not PL-homeomorphic to a sphere.
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An infinite series of examples due to Kühnel show that g(d) ≤
(
d+1

2

)
[8]. However,

there are some reasons to believe that g(d) is closer to d2/4 than d2/2.
One topological invariant where the role of g2 is well-understood is the first Betti

number of |∆|. The following theorem was originally conjectured by Kalai.

Theorem 3.2 [11] Let ∆ be a (d − 1)-dimensional combinatorial manifold with d ≥ 4.
Then g2 ≥

(
d+1

2

)
β1, where β1 is the first Betti number with respect to any field.

The following extension of this to the fundamental group has been suggested by Kalai.

Conjecture 3.3 If ∆ is a (d − 1)-dimensional combinatorial manifold with d ≥ 4, then
g2 ≥

(
d+1

2

)
m, where m is the minimum number of generators of the fundamental group of

|∆|.

Another obvious question raised by finiteness for g2 is whether or not similar results
hold for gi, i ≥ 3. At first sight, the answer is no. In dimension four, g3 = 10χ(|∆|) [7] and
there can be infinitely many PL-homeomorphism types for a fixed Euler characteristic.
Even if one takes the view that dimension four is too small and that the question should
not be asked for g3 until dimension five, there are combinatorial manifolds homeomorphic
to S1 × S4 with g3 < 0 [8]. Repeatedly taking connected sum along a facet produces g3

which tends to minus infinity, so an upper bound does not produce topological finiteness.
However, the proper generalization of topological finiteness for g2 to higher gi should
involve bounding Betti numbers. Indeed, if instead of insisting on connected complexes,
but instead an upper bound on β0, then the analog of Theorem 2.1 still holds. This leaves
as one possible generalization of Theorem 2.1 this suggestion of Kalai.

Problem 3.4 Fix d, g, b0, . . . , bi−2, and i < d/2. Is the number of PL-homeomorphism
types of combinatorial manifolds ∆ with dim ∆ = d, gi ≤ g, and βj(|∆|) ≤ bj for 0 ≤ j ≤
i− 2 finite?
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