Math 3040 Discussion questions, Sept. 9, 2019

- 1. Suppose $(Z, +, \cdot)$ is a ring. Prove that if there exists $m \in Z$ such that m + x = m, then x = 0.
- 2. Suppose $(Z, +, \cdot)$ is a commutative ring. Prove that if 3|m and 3|n, then 3|mn and 3|(m+n). Remark: What is 3?
- 3. Suppose $(Z, +, \cdot)$ is an integral domain. Prove that if there exists $m \in Z, m \neq 0$ such that $m \cdot x = m$, then x = 1.
- 4. Let $(Z, +, \cdot)$ be an integral domain. Prove that if $x \in Z$ and $x \cdot x = x$, then x = 0 or x = 1.
- 5. Fix n a positive integer. Instead of Z being the integers suppose Z is all $n \times n$ matrices with real coefficients. Let addition and multiplication be addition and multiplication of $n \times n$ matrices. Is Z a ring? commutative ring? integral domain?