Math 3040 Discussion questions, Sept. 30, 2019

- 1. Project 3.7 i) iii) in TAP.
- 2. Prove that

$$\sum_{i=1}^{j} f_i = f_{j+2} - 1,$$

where f_i is the i^{th} Fibonacci number.

- 3. Consider a modified Fibonacci sequence as follows. Let $(Z, +, \cdot)$ be a commutative ring. Choose a, b in Z and define a sequence of elements of Z as follows:
 - $f_1 = a$.

•
$$f_2 = b$$

• $f_n = f_{n-1} + f_{n-2}$ for $n \ge 3$.

Find a 'similar' formula to the previous problem for this modified Fibonacci sequence and prove it.

4. Define a_n to be the number of subsets of $[n] = \{1, ..., n\}$ which do not contain two consecutive integers. For example, $a_2 = 3$ since the subsets of $[2] = \{1, 2\}$ which do not contain consecutive integers is

 $\{\emptyset, \{1\}, \{2\}\}$

and there are three of them. Find a formula for a_n .