Math 3040 HW 11 - Will not be collected

- 1. Let (G, \cdot) be a group such that for all $g \in G$, $g^2 = 1$. Prove that for all g and h in G, $g \cdot h = h \cdot g$.
- 2. Let (G, \cdot) and (H, \circ) be groups. A function $f : G \to H$ is a homomorphism if for all $g, g' \in G$, $f(g \cdot g') = f(g) \circ f(g')$. The kernel of a homomorphism f is

$$\ker f = \{g \in G : f(g) = 1_H.\}$$

Prove that ker f is a subgroup of G.

3. Let $f: G \to H$ be a homomorphism from the group (G, \cdot) to the group (H, \circ) . Let $K = \ker f$. Prove that for all $g \in G$,

$$\{g \cdot k : k \in K\} = \{k \cdot g : k \in K\}$$