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Abstract.

1. Introduction

2. Formulation of the Problem

Let f be a continuous function on the circle R/2πZ. The partial sums of the
Fourier series of f may be written as convolutions of f with the Dirichlet Kernel

(2.1) Snf(x) =

π∫
−π

Dn(t)f(x− t) dt

for

(2.2) Dn(t) =
1

2π
(1 + 2

n∑
k=1

cos(kt)) =
1

2π

sin(n+ 1
2 )t

sin( 1
2 t)

We have

(2.3)

∫ π

−π
Dn(t)dt = 1

but

(2.4)

∫ π

−π
|Dn(t)|dt = O(logn)

so the Dirichlet Kernel fails to be an approximate identity, and in general the
partial sums do not converge to f. Fejèr observed that the averages
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(2.5) σn(f)(x) =
1

N + 1

N∑
k=0

sk(f)(x)

are also given by convolution with Kernels Kn given by

(2.6) KN (t) =
1

N + 1

N∑
n=0

Dn(t) =
1

2π(N + 1)
(
sin(N+1

2 t)

sin( 1
2 t)

)2

But now Kn(t) is nonnegative, so

(2.7) 1 =

∫ π

−π
Kn(t)dt =

∫ π

−π
|Kn(t)|dt

and in fact Kn is an approximate identity. Specifically, we have the estimate

(2.8)

∫
|t|>ε
|Kn(t)|dt 6 c

Nε

for some c and all ε > 0.
So if we define the modulus of continuity of f by

(2.9) mε(f) = sup
x

sup
|t|6ε
|f(x− t)− f(x)|

then

||Kn ∗ f − f ||∞ 6
∫
|t|6ε
|f(x− t)− f(x)|Kn(t)dt+

∫
|t|>ε

2||f ||∞Kn(t)dt

6 mε(f) + 2||f ||∞
1

N + 1
(

1

sin( 1
2ε)

)2
(2.10)

Thus we obtain Fejèr’s theorem that Kn∗f converges uniformly to f as N →∞
in a quantitative form.

Now suppose we are given a sequence

(2.11) 0 = n0 < n1 < n2 < n3 < ...

and we consider the sparse averages

(2.12) σ̃n(f) =
1

N + 1

N∑
k=0

snk
(f)

analogous to (2.5). Then, analogous to (2.6), we have

(2.13) σ̃n(f) = Qn ∗ f for
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(2.14) QN (t) =
1

N + 1

N∑
k=0

Dnk
(t) =

1

N + 1

1

2π

N∑
k=0

sin(nk + 1
2 )t

sin( 1
2 t)

In order to show that σ̃n(f) → f uniformly for continous f we need to verify
that Qn is an approximate identity:

(2.15)

∫ π

−π
Qn(t)dt = 1

(2.16)

∫ π

−π
|Qn(t)|dt 6M for all n

(2.17)

∫
|t|>ε
|Qn(t)|dt 6 ϕε(N)

with lim
N→∞

ϕε(N) = 0 for all ε > 0 Indeed, just like (2.10) we obtain

(2.18) ||Qn ∗ f − f ||∞ 6Mmε(f) + 2||f ||∞ϕε(N)

and hence Qn ∗ f → f uniformly.
Of course, (2.15) is an immediate consequence of (2.3).

Main Question:
Under what conditions on the sequence nj do we have (2.16) and (2.17)?

3. A Counterexample

In this section, we show how to modify a construction of the Fejer of a contin-
uous function whose Fourier series diverges at a point to exhibit a sequence nj and
a continuous function such that σ̃n(f)(0) is unbounded. The basic building block
is the function

Fn,m(x) =
cos(m)x

n
+
cos(m+ 1)x

n− 1
+ ...+

cos(m+ n− 1)x

1

− cos(m+ n+ 1)x

1
− cos(m+ n+ 2)x

2
− ...− cos(m+ 2n)x

n

(3.1)

Note that

(3.2) SnFn,m(x) =

{
0 if N < m

Fn,m(x) if N > m+ 2n

(3.3) Fn,m(0) = 0

(3.4) Sn+mFn,m(0) = O(logn)
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We also have the uniform boundedness of all Fn,m as a consequence of the

uniform boundedness of
∑n
k=1

sin(kx)
k .

Now we choose nk,mk so there is no overlap between the exponentials in
Fnk,mk

. For example, this will hold if mk > 1 + mk−1 + 2nk−1. Then we choose
positive coefficients ak such that

(3.5)

∞∑
k=1

ak <∞ and set

(3.6) f =

∞∑
k=1

akFnk,mk
, the series converging uniformly

Note that

(3.7) Snk+mk
f(0) = akSnk+mk

Fnk,mk
(0)

since all the other terms vanish. Thus

(3.8) Snk+mk
f(0) = O(aklog(nk))

and we can make this diverge by the appropriate choice of nk and ak. For

example, ak = k2 and nk = mk = 2(k
3). Thus the sequence 2 ∗ 2(k

3) gives a
negative answer to the Main Question in the previous section.

4. The Linear Case

In this section we deal with the case

(4.1) nk = pk

where p is a positive integer. The case p = 1 gives the Cesaro sums, so QN is
exactly the Fejer Kernel. We will see that the behavior of QN is not as nice as the
Fejer Kernel. The statement

(4.2) lim
N→∞

QN (t) = 0

holds uniformly for any fixed ε > 0for|t| > ε for p = 1 but it is false for
p > 2, as there are specific choices of t (for example 2π

p ) where QN (t) is a nonzero

constant. Nevertheless, we will prove that QN is an approximate identity, using
the average decay (2.17) as a substitute for (4.2).

Lemma 4.1. For nk = pk we have

(4.3) QN (t) =
1

2π

1

N + 1

sin((p2N + 1
2 )t)sin(p2 (N + 1)t)

sin( 1
2 t)sin(p2 t)
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Proof. In view of (2.14) it suffices to show

(4.4)

N∑
k=0

sin(kp+
1

2
t) =

sin((p2N + 1
2 )t)sin(p2 (N + 1)t)

sin(p2 t)

Now the left side of 4.4 is equal to

1

2i
(e

i
2 t(

ei(N+1)pt − 1

eipt − 1
)− e

−i
2 t(

e−i(N+1)pt − 1

e−ipt − 1
))

=
1

2i
(
e

i
2 tei(N+1) p

2 t

ei
p
2 t

)(
sin(N + 1)p2 t

sin(p2 )t
)− 1

2i
(
e

−i
2 te−i(N+1) p

2 t

e−i
p
2 t

)(
sin(N + 1)p2 t

sin(p2 )t
)

=
1

2i
(ei((

p
2N+ 1

2 )t) − e−i((
p
2N+ 1

2 )t))(
sin(N + 1)p2 t

sin(p2 )t
)

=
sin((p2N + 1

2 )t)sin(p2 (N + 1)t)

sin(p2 t)

�

But when p = 2 we have

QN (π) =
1

2π

1

N + 1

sin(N + 1
2π)

sin(π2 )
lim
s→0

sin(N + 1)(π − s)
sin(π − s)

=
1

2π

1

N + 1
(−1)N (−1)N lim

s→0

sin(N + 1)s

sin(s)

=
1

2π

We have a similar computation for general p

Lemma 4.2. Let j 6 p
2 . Then

(4.5) QN (
2jπ

p
) =

1

2π

Proof. As before,

sin(p2N + 1
2 ) 2j

p π

sin( 1
2 ( 2j

p π))
=
sin(Njπ + j

pπ)

sin( jpπ)
= (−1)Nj

and
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sin(p2 (N + 1)t)

sin(p2 t)

∣∣
t= 2

p jπ
= lim
s→0

sin(p2 (N + 1)( 2
pjπ + s))

sin( 2
pjπ + s)

= lim
s→0

sin(jπ(N + 1) + p
2 (N + 1)s)

sin(jπ + p
2s)

= (−1)Nj lim
s→0

sin(p2 (N + 1)s)

sin(p2s)

= (−1)Nj(N + 1)

�

Theorem 1. For nk = pk, Qn is an approximate identity, so σ̃n(f) → f
uniformly for continuous f

Proof. We need to prove (2.16) and (2.17) since (2.15) is automatic. Note
that we can write (4.3) as

(4.6) |QN (t)| = 1

2π

1

N + 1
hN (t)hN (pt) for

(4.7) hN (t) = |
sin(N+1

2 t)

sin( 1
2 t)

|

Of course when p = 1 we obtain the Fejer Kernel which we know satisfies (2.16)
and (2.17) by (2.7) and (2.8). By the Cauchy-Schwarz inequality,

∫ π

ε

|QN (t)|dt 6 1

2π
(

1

N + 1

∫ π

ε

hN (t)2dt)
1
2 (

1

N + 1

∫ π

ε

hN (pt)2dt)
1
2

so it suffices to show that 1
2

∫ π
−π hN (pt)2dt is uniformly bounded. But this is

equal to 1
N+1

1
p

∫ pπ
−pπ hN (t)2dt by a change of variable and hN is periodic of period

2π, so this is equal to 1
N+1

∫ π
−π hN (t)2dt, which is uniformly bounded by (2.7).

�
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